
ED 383 548

AUTHOR
TITLE

INSTITUTION

REPORT NO
PUB DATE
NOTE
AVAILABLE FROM
PUB TYPE

EDRS PRICE
DESCRIPTORS

DOCUMENT RESUME

SE 056 253

Thomas, David A., Ed.
Scientific Visualization in Mathematics and Science
Teaching.
Association for the Advancement of Computing in
Education, Charlottesville, VA.
ISBN-I-880094-09-6
95

293p.
AACE, P.O. Box 2966, Charlottesville, VA 22902.
Books (010) Guides Classroom Use Teaching
Guides (For Teacher) (052) Collected Works
General (020)

MFO1 /PC12 Plus Postage.
Calculators; Computer Software; *Computer Uses in
Education; *Educational Technology; Elementary
Secondary Education; Graphs; *Mathematics
Instruction; *Science Instruction; *Technology
Education; *Visualization

IDENTIFIERS Graphing Utilities

ABSTRACT
Science and mathematics educators are expected to use

existing educational technologies effectively and to keep informed
about emerging technologies that might become important educational
tools in the not-so-distant future. This monograph offers some help
in that regard by highlighting a number of existing and emerging
educational technologies. Chapters are: (1) "The Power of
Visualization: The Impact of Graphing Technology on the Secondary
Mathematics Curriculum," L. E. Yunker; (2) "Using Graphing
Calculators to Teach High School Mathematics," L. Kaber & K.
Longhart; (3) "Advanced Technologies as Educational Tools in Science:
Concepts, Applications, and Issues," D. D. Kumar, P. J. Smith, S. L.

Helgeson, & A. L. White; (4) "Videodisc Technology: Applications for
Science Teaching," D. R. Lavoie; (5) "Computer Visualization: New
Window on Mathematics," D. A. Thomas & M. Mitchell; (6) "Visualizing

Computer Science," R. J. Ross; (7) "Getting Started With
Supercomputing: An Approach for High School Students," D. W. Hyatt;
(8) "Scientific Visualization in Chemistry, Better Living through
Chemistry, Better Chemistry through Pictures: Scientific
Visualization for Secondary Chemistry Students," R. R. Gotwals, Jr.;
(9) "The National Education Supercomputer Program," R. Enderton & B.
Lindow; (10) "New Mexico High School Supercomputing Challenge," M. S.
Foster; (11) 'Sharing Multiple Complementary Representations in the
Teaching of Science," N. H. Sabelli & I. S. Livshits; (12) "Education
and Collaboration in an Evolving Digital Culture," D. J. Cox; (13)

"The Hypergraphics Honors Seminar at Illinois," G. K. Francis; and
(14) "A Syllabus For Scientific Visualization," A. Pang. (MKR)

* * * *,'r ******** * * **** ' r******************** *** ** *** ** *** *** * * *** **** ** * ***

Reproductions supplied by EDRS are the best that can be made
from the original document.

-"="",-.mman

00

tr1

U S IMPARTMENT OF tOUCATION
Office of EducalanN Rarco And ImoNwmot
EDUCATIONAL RESOURCES INFORMATION

CENTER IERICI

.1,s document III Olen te0tOduCe0 al1,, ,,,L
*wed from trio oiNsoo 01 ofganttehon

orogmatong .1

CI 1.1,not cnencea nevi been mad* to .mosovo
eofochichon 0111110

Pants Dewitt* 0l 00111011 Staled in Intl dOCu
11111 00 nal ml/COSeenly represent ()Metal
OE RI posiloon or ooltC

BEST COPY AVAILABLE

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC1

edited by David A. Thomas

"II

71111117Iff..

Scientific Visualization in
Mathematics and
Science Teaching

edited by David A. Thomas

ASSOCIATION FOR THE ADVANCEMENT OF COMPUTING IN EDUCATION

3

ISBN 1-880094-09-6

Copyright OD 1995 by the Association for the Advancement of Computing in Education

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, without permission in writing from the
publisher.

The publisher is not responsibile for the use which might be made of the information
containing in this book.

Published by the Association for the Advancement of Computing in Education (AACE) P.O.
Box 2966, Charlottesville, VA 22902 USA

Printed in the USA

CONTENTS

Introduction

Contribute ors iii

Chapters

1 The Power of Visualization: The Impact of Graphing Technology
on the Secondary Mathematics Curriculum
LEE E. YUNKER

2 Using Graphing Calculators to Teach High School Mathematics
LARRY KABER AND KAREN LONGHART 19

3 Advanced Technologies as Educational Tools in Science:
Concepts, Applications, and Issues
DAVID D. KUMAR, PHILIP J. SMITH, STANLEY L. HELGESON, AND ARTHUR L. WHITE 27

4 Videodisc Technology: Applications for Science Teaching
DERRICK R.LAVOIE 45

5 Computer Visualization: New Window on Mathematics
DAVID A. THOMAS AND MARK MITCHELL 67

6 Visualizing Computer Science
ROCKFORD J. Ross 99

7 Getting Started With Supercomputing: An Approach for
High School Students
DONALD W. HYATT 129

8 Scientific Visualization in Chemistry, Better Living
Through Chemistry, Better Chemistry Through Pictures:
Scientific Visualization for Secondary Chemistry Students
ROBERT R. GOTWALS, JR. 153

9 The National Education Supercomputer Program
RICHARD ENDERTON AND BRIAN LINDOW 181

10 New Mexico High School Supercomputing Challenge
MARILYN S. FOSTER

201

11 Sharing Multiple Complementary Representations in the
Teaching of Science

NORA H. SABELLI AND IGOR S. LIVSHITS 213

12 Education and Collaboration in an Evolving Digital Culture
DONNA J. Cox 225

13 The Hypergraphics Honors Seminar at Illinois
GEORGE K. FRANCIS 237

14 A Syllabus For Scientific Visualization
Aux FANG 261

Color Prints 285

Cover: Olympos Mons, Mars

Introduction

Not so long ago, educators prided themselves on the stability of their programs and
the traditions of their institutions. Formal education's principal goals were tofoster an
appreciation for learning and to develop citizens of sound moral character and
judgment. For better or for worse, today's fast-paced world is forcing educators and
educational institutions to refocus their goals to accommodate or even anticipate
change. For instance, as science and mathematics educators, we are expected to use
existing educational technologies effectively and to keep informed about emerging
technologies that might become important educational tools in the not-so-distant
future. This monograph offers some help in that regard by highlighting a number of
existing and emerging educational technologies. Chapters were contributed by class-
room teachers, university mathematics and science educators, and specialists from the
National Science Foundation (NSF), the National Center for Supercomputing Applica-
tions, and a number of other governmental agencies.

In chapters 1 and 2, the use of graphing calculators in high school mathematics is
discussed. This technology offers a low-cost alternative to computer-based graphing
packages. In what ways does this technology support existing goals advanced by the
NCTM Curriculum and Evaluation Standards? How should a school approach the
problems of cost and equity associated with this technology? What do parents and
students think about the technology? These and other questions are addressed by three
high school teachers who are also leading proponents of this technology.

Two popular educational technologies are discussed in chapters 3 and 4, hypermedia
and interactive videodisk. What d stinctive advantages do these interactive media offer
science educators interested in tools for enhancing concept development? What are the
costs associated with the use of these technologies? How do you get started? The authors
of these chapters are all university-based science educators with extensive experience
in the development and use of educational materials based on these technologies.

In chapters 5.14, a number of emerging technologies and their educational impli-
cations are discussed. The technologies range from computer microworlds to supercom-

puting and scientific visualization tools. Here, a broad spectrum of classroom teachers,
university mathematics and science educators, and scientists explore exotic technolo-
gies, the nature of collaborative and interdisciplinary science in the information age,
and opportunities for students and teachers interested in high performance computing
and communications.

If you are interested in current and emerging educational technologies for science
and mathematics education, this monograph will introduce you to a group of teachers
and researchers who share your interest and who are developing and testing educa-
tional materials based on those technologies. On behalf of the authors of this mono-
graph, welcome to the future!

David A. Thomas
Associate Professor of Mathematics Education

Department of Mathematical Sciences
Montana State University

Bozeman, MT 59 71 7
umsfdtho@mathfs.math.montana.edu

Dedicated to
Lee E. Yunker in recognition of a lifetime of teaching and service.

Contributors

Chapter 1

The Power of Visualization: '. he Impact of Graphing Technology on the
Secondary Mathematics Curriculum

Lee E. Yunker
Mathematics Department
West Chicago Community High School
West Chicago, Illinois 60185

Chapter 2

Using Graphing Calculators to Teach High School Mathematics

Karen Longhatt
Mathematics Department
Flathead High School
Kalispell, Montana 59901

Lawrence R. Kaber
Mathematics Department
Flathead High School
Kalispell, Montana 59901

Chapter 3

Advanced Technologies as Educational Tools in Science: Concepts, Applica-
tions, and Issues

David D. Kumar
College of Education
Florida Atlantic University
Davie, Florida 33314

Philip J. Smith
Department of Industrial and Systems Engineering
The Ohio State University
Columbus, Ohio 43212

Stanley L. Helgeson
National Center for Science Teaching and Learning
The Ohio State University
Columbus, Ohio 43212

Arthur L. White
National Center for Science Teaching and Learning
The Ohio State University
Columbus, Ohio 43212

Chapter 4

Videodisc Technology: Applications for Science Teaching

Derrick R. Lavoie
Department of Biology
University of Northern Iowa
Cedar Falls, Iowa 50614

Chapter 5

Computer Visualization: New Window on Mathematics

David A. Thomas
Department of Mathematical Sciences
Montana State University
Bozeman, Montana 59717

Mark R. Mitchell
Bridger Systems
Bozeman, Montana 59715

Chapter 6

Visualizing Computer Science

Rockford J. Ross
Computer Science Department.
Montana State University
Bozeman, Montana 59717

Chapter 7

Getting Started With Supercomputing: An Approach for High School
Students

Donald W. Hyatt
Computer Science Teacher & Laboratory Director
Thomas Jefferson High School for Science and Technology
Alexandria, Virginia 22312

iv i)

Chapter 8

Scientific Visualization in Chemistry, Better Living Through Chemistry,
Better Chemistry Through Pictures: Scientific Visualization for Secondary
Chemistry Students

Robert Gotwals, Jr.
Education and Human Resources, K-12 Programs Specialist
MCNC Academic Programs
Research Triangle Park, North Carolina 27709

Chapter 9

The National Education Supercomputer Program

Richard Enderton
Mathematics Department
Minnehaha Academy
Minneapolis, Minnesota 55406

Brian Lindow
National Education Supercomputer Program
Lawrence Livermore National Laboratory
Livermore, California 94550

Chapter 10

New Mexico High School Supercomputing Challenge

Marilyn S. Foster
Computing Information & Communications Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Chapter 11

Sharing Multiple Complementary Representations in the Teaching of Science

Nora H. Sabel
Networking Infrastructure for Education, EHR
National Science Foundation
Arlington, Virginia 22230

Igor S. Livshits
Computing and Communications
National Center for Supercomputing Applications
Champaign, Illinois 61820

V

1 i

Chapter 12

Education and Collaboration in an Evolving Digital Culture

Donna J. Cox
School of Art & Design
University of Illinois at Urbana-Champaign &
National Center for Supercomputing Applications
Champaign, Illinois 61820

Chapter 13

The Hypergraphics Honors Seminar at Illinois

George K Francis
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Chapter 14

A Syllabus for Scientific Visualization

Alex Pan.g
Computer and Information Sciences Board
University of California, Santa Cruz
Santa Cruz, California 95064

vi

Chapter 1

The Power of Visualization:
The Impact of Graphing Technology on the

Secondary Mathematics Curriculum

L©: E. YuNiust

My purpose in this chapter is toprovide you with background information on historical
developments related to the use of graphing technology (especially the graphing calculator)
in the secondary mathematics curriculum in the United States from the early 1980s to the
present time. An effort will be made to present a multi-dimensional view including the role
of graphing technology and its development, the powerful influences of the professional
mathematics organizations, and the present state of mathematics curricula and instruction
in the United States.

More specifically, an attempt will be made to provide a comprehensive view of the
development and current use of graphing technology in the United States' secondary
mathematics curriculum. It is now clear that the use of graphing technology enhances
cognitive development through the power of visu ab.sation. The ability that exist/6 today to
model the algebraic concepts ofthe curriculum in a visual geometric wayhas had a profound
impact in addressing the differing styles of today's secondary students. in most schools
across the U.S. graphing calculators are in the hands of almost every student. For example,
over 1,200 students (school enrollment, 1,500) in West ChicagoCommunity High School (a
school with a 30% minority population) have graphing calculators and are expected to use
them daily.

The graphing calculator is a very powerful tool for exploring, investigating and
discovering many ahstra nathematical relationships. Today's high school freshmen are
graphing as many functions as most of us graphed in all of our secondary andundergradu-
ate work if, the field of mathematics. Th e opportunity for stu den ts to have this power is truly
revolutionary in relation to the chalkboard, chalk, pencil, and paper of the last 100 years.

The use of graphing technology in the secondary mathematics curriculum is just in its
infancy. The spread of its use is being facilitated by the relatively inexpensive cost of
acquiring a graphing calculator. In comparison, students frequently spend anywhere from
$100-$150 for a pair of brand name athletic shoes for everyday wear. These shoes are often
of no use within 4-6 months. In contrast, the cost of the current top-of-the-line graphing
calculator is in the neighborhood of $60.

In this chapter, an attempt will be made to provide an inside look at the publishing
industry's role as it relates to the use of graphing technology in their educational materials.
It will include a look at some of the inhibiting and facilitating factors that are at work in
this industry as it operates independently of any governmental rules and regulations,
unlike those in several foreign countries we are constantly charged to emulate in
mathematics education.

Further, there will be an effort made to assess the present level of professional
development of mathematics teachers in the United States with respect to some of the
initiatives that have taken place in conjunction with graphing technology. Included will be
the impact resulting from the leadership and vision of such professional organizations as
NCTM, MSEB, and the MAA.

Finally, a significant portion of this chapter will be devoted to fipecific examples of
current nractice. The primary focus will be on the use of graphing calculators or pocket
computers (Waits). Examples will come from a variety of areas including Algebra,
Geometry, Advanced Algebra, Precalculus, Fractals, Chaos and Dynamics.

Historical Developments

During the 1980s, we had two major concurrent and parallel developments which
played a major role in effecting change in mathematics education in the U.S. at the
secondary leveL First the calculator industry, led by Casio (Japan), developed the first
scientific calculator with a graphing display screen; and, second, the National Council of
Teachers of Mathematics (NCTM) released their Curriculum and Evaluation Standards
for School Mathematics (March, 1989).

The Standards called for "scientific calculators with graphing capabilities to be made
available to all secondary students at all times." In addition, the Standards stated that "a
computer (should) be available at all times in every classroom for demonstration purposes,
and that all students have access to computers for individual and group work." The
graphing calculator provided a powerful analytical tool to be interfaced with the reform of
the mathematical content of the secondary curriculum. In addition, desktop computers
were gaining popularity and were found in many homes; graphing software was also being
developed which could be used to extend and enhance their capabilities. As a result, the
Standards called for increased attention be given to the use of calculators and computers
as tools for learning and doing mathematics. Many of the standards at the secondary level
include graphing because of the power of visualization to make connections between
numerical, algebraic, and geometric representations.

Shortly after Casio's launching of the first graphing calculator, the rest of the industry
realized that there was a huge market for such technology in education, and they began
to enter the field. Probably the most significant of these entries to date has been that
of Texas Instruments, which introduced the TI81 and TI85 graphics calculators.

2

The advancements in this new technology will undoubtedly continue to develop as the
availability of more powerful and inexpensive computer chips increases. This appears to be
the only limitation being placed on this new graphing technology. The calculator industry
constantly weighs expanding the capabilities of the technology against the cost they believe
the consumer is willing to bear.

Factors Inhibiting the Use of Graphing Technology

The use of graphing technology at the secondary level is rapidly expanding. This
expansion is being spearheaded by the leadership of NCTM with the acceptance of the
NCTM Curriculum and Evaluation Standards for School Mathematics. Their acceptance
is also now being hailed by publishers and testing companies, as well as by the professional
mathematics teacher.

One of the major hurdles that most schools have had to overcome is a lack of research
regarding the impact of calculator technology on student learning. During the late 1980s,
a metaanalysis of research was conducted at the Universityof Tennessee which indicated
that the use of four function and scientific calculators enhanced student learning in almost
all grades from first through 8th grade. The only exception was found to be in the grade
levels where fractions were first introduced; here the research data was mixed with no clear
advantages one way or another. Today, the lack of research is not as acute, particularly at
the secondary level and mathematics teachers have accepted the fact that this technology
will enhance student learning and performance.

Two other factors that have inhibited widespread usage of graphing technology are
staff development and the cost of the technology itself. First, Mathematics teachers need
to understand exactly what the appropriate uses are of this new graphing technology and
how they might modify their teaching in order to include them in their classrooms. Second
is the issue of cost and the belief held by some that it's the schoors responsibility to provide
this technology.

It's about time we stand up tall and tell it like it is, there are no free lunches out there!
Educational opportunities for our children are not, and never have been totally free.
Parents must bare some of these expenses directly if they want the best for their children.
Those areas in the U.S. where mostof the use ofgraphing technology can be found are where
school districts have taken the position that the cost of this technology should be borneby

the student.

Professional Development

As with any reform, staff development is absolutely critical. Teachers have to feet
comfortable with the changes being proposed and must be inserviced in terms of their
appropriate use. Teachers must acknowledge the changes are necessary and then lead in
their local implementation. This is absolutely critical for the changes in technology.
Teachers may, as a result, find themselves way out on the cutting edgea bit scary,but
also exhilarating. This may be due in part to two things. First, schools are notnecessarily
going to be in a materials adoption cycle that would facilitate immediate change; and
second, the materials that are adopted (by a school) may not embrace the change to the
extent that the professional teacher might desire.

3

1.J

The NCTM has been very concerned with implementation of the Curriculum and
Evaluation Standards and has now turned its energies toward staff development related
Arts. This can be seen through its support of a number of different activities, including
new NCTM publications and affiliated group conferences and workshops, specifically
related to building an awareness of the individual Standards at each grade level A very
relevant case in point is NCI'M's efforts regarding the implementation of graphing
technology. The NCI'M has developed a series of video tapes and a new position statement
which strongly advocates the use of calculators at all grade levels, including calculators
with graphing capabilities at the secondary level

Institutions such as Ohio State University, with their C=PC Program directed by Frank
Demana and Bert Waits, have had a profound impact on developing a national cadre of
teachers who are implementing the use of graphing technology in their classrooms. These
teachers are doing staff development in their own local areas and surrounding states. In
addition, these teachers are nodes in an outstanding networking structure which encour
ages the exchanging of teaching ideas on a regular basis.

Waits was one of the members of the writing team for the NCTM Curriculum and
Evaluation Standards. Internationally, Demana and Waits are viewed as the most
prominent in the implementation of graphing technology in the school mathematics
curriculum. Demana and Waits have written several textbooks that make extensive use of
graphing technology. These materials have found widespread acceptance across the U.S.,
especially at the precalculus level These men, along with others, have also had an impact
at the college and university level in the U.S. Unfortunately, it must be noted that many
mathematics professors and departments at the undergraduate level are much more
resistent to any use of graphing technology than their secondary counterparts.

The Publisher's Role

Most curriculum research has shown that the implemented curriculum in U.S.
classrooms is dominated by the textbook. It is estimated that 90% of the implemented
curriculum is textbook driven. This means that the publishing industry has a profound
impact on what actually occurs in our classrooms. For the most part, the publishing
industry in the United States is free from government rules and regulations; free to develop
whatever materials it thinks are likely to be purchased by schools andteachers. As a result,
decisions to be made about curriculum content for these privately held corporations are
always motivated by profit. Profit to a publishing company is the primary determining
factor when it comes to what appears in a textbook in terms of its content. Content change
in a textbook occurs when the publisher views that change to be saleable in the educational
community.

It is clear that private industry, mod\ aced solely by the bottom line, will never lead a
reform movement in mathematics education. This is the sole responsibility of the profes-
sionals in the field. Mathematic education is what "we" make it!

Because of their focus on profit, it is my opinion that the publishing industry has slowed
the reform movement in mathematics education in this country. At first publishers were
very skeptical about whether or not the Standards would be the driving force in leading
the curriculum reform in the U.S. Needless to say, the first textbooks that were produced
immediately after the release of the Standards (1989) reflected only insignificant changes.

4
I. 0

As new textbooks were released in the spring of 1991, we saw a more significant step
being taken to implement the Standards. Today the publishing industry embraces and
touts the implementation of the Standards. Why such a turn around? Because teachers
everywhere are demanding a Standards-type product. Again the perceived market
dictates the publishing industry's direction. As a result, secondary level textbooks are now
assuming the use of graphing technology on the part of every mathematics student.

The Testing Industry: Leading or Trailing?

While the major publishers were dragging their feet on implementing the Standards,
so to were the major testing companies and services. They were totally ambivalent when
it came to making changes relative to the use of any calculators. Their influenceregarding
the use of technology and the preparation of college preparatory students has been a major
inhibiting factor to NCTM's goals of a quality education for every child. Only recently has
the testing community begun to change. This is due to the enormous pressure placed on it
by NCTM and the acceptance of the Standards.

For example, in October, 1990, the College Board of Trustees approved revision ofthe
College Board Admission Test Program ("ATP") including significant change in the
Scholastic Aptitude Test ("SAT"). The new ATP "SAT r will have a mathematical testing
component with increased emphasis on critical reading and new student-generated
answers in mathematics. SAT-I willbe introduced in the spring, 1994. At the same time that
these developments are taking place, we're seeing other private tatting corporations
considering or making changes relative to the use of calculators. Many of them are now re-
norming their tests to accommodate the use of calculators.

Graphical Content in Pre-Algebra Mathematics

One of the major concerns regarding student preparation deals with the graphing
content of the typical curriculum prior to a student's exposure to graphing at the secondary
level The following observations have been described by Demana, Schoen, and Waits
(1931) regarding the current state of affairs in pre-secondary mathematics education:

In grades 1.6, students have almost no experience constructing a graph of any kind.
In grades 1.6, variables that are graphed are nominal or sometimes discrete, with
variable values placed at equidistant points on the axis, and this continues to be true,
to a lesser extent, in grades 7 and 8.
In grades 1.6, graphs which students have encountered have a limited number of
points to be interpreted, with the intervals between those pointsbeing meaningless,
and this continues to be true, to a lesser extent, in grades 7 and 8.
In grades 1-6, graphs are almost always presented as existing entities to be
in terpreted point by point in connection with some "real" context, and no suggestion
is made that graphs may be connected to numerical relationships.
Other than when graphing linear equations and inequalities in grades 7 and 8,
students are not expected to make global or qualitative interpretations of graphs.
Through grade 8, students have no experience with graphs of non-linear functions.

As a result of these findings, it's not surprising that students have many miscon-
ceptions about graphs that they bring with them to their secondary mathematics experi-
ences. Therefore, secondary teachers will have to expect that students will need time to
make adjustments as they investigate and explore the effects of scaling, global relation-
ships, and the connections among numerical, algebraic and graphical representations of an
application or concept.

Recent Research Findings

Demana, Schoen, and Waits (1993) have reported on several recent research projects
that have implications for the use of graphing technology in the secondary curriculum. A
few of these will be highlighted to emphasize the importance of the use of graphing
technology at the secondary leveL

Rich (1990) found that students who used the graphing calculator for the entire year
of precalculus were far better able to deal with issues of scale on a graph than comparison
students in traditional instruction. Rich also found that students who are taught precalcu-
lus using a graphing calculator better understand the connections between an algebraic
representation and its graph and that they view graphs more globally, and that they
understand the importance of a function's domain, the intervals where it increases and
decreases, its asymptotic behavior and its end behavior.

Browning (1988) found that high school precalculus students who use graphing
calculators for one year exhibited a significantly increased ability to deal with graphing at
the more advanced Van Hiele levels of analysis and ordering.

Farrell (1989) also observed that precalculus students who were taught the use of
graphing calculators demonstrated greater facility with higher-order thinking skills than
traditional students.

Dunham (1990) observed that in college algebra classes requiring graphing calculators,
gender-related differences in performance on graphing items were eliminated, while pre-
test performance on graphing items indicated that females performed at a lower level than
males.

Rich also found that precalculus students in traditional instruction made almost no use
of graphs outside of units on graphing.

The Power of Graphing Technology

The power of graphing technology to enhance student cognitive knowledge can best be
shown through a series of examples.

Let's first consider the equation xs. 9x4+ 24x2. 16 = 0, and its real roots. This equation
would traditionally be solved strictly by numerical and algebraic processes. The Funda-
mental Theorem of Algebra and the Rational Root Theorem would suggest six roots in the
complex numbers with possible rational roots of and There is no
suggestion of multiple roots and certainly no suggestion to graph its related function
f(x) = x2- .9x4+ 24x2- 16. Students in the past rarely made the global connection between the
geometric representation of the function and its x-intercepts, and the polynomial equation
and its' roots. This connection, I content! was only weakly made, if made at all, and then

6

for only linear and quadratic equations.) Why? The answer should be obvious. How many
of us would have wanted to plot a sixth degree polynomial by computing a table of values?

The following sequence of graphs for f(x) = x6 9x4 + 24x2 - 16 brings to light a
powerful visual connection between the function and its graph and the roots to the
equation x6- 9x6+ 24 x2- 16 = 0.

Figure 1 may be a surprise to the uninitiated student, but not to one that has had a few
experiences with graphing polynomial functions. The viewing window in Figure 1 is not yet
displaying a complete graph. Complete graphs are ones which show all their important
behaviors (Deman a and Waits, 1990). These behaviors include y-intercepts, zeros, relative
extrema, and end behavior. Figure 2 is a result of zooming out by a magnification factor of
two. It too is not yet a complete graph. However, to the educated eye both Figure 1 and
Figure 2 provide a great service in solving the equation. Its clear that this equation has
double roots at -2 and 2, with single roots at fl. These can then be quickly verified by
appropriate numerical methods. What else do you think a student might learnfrom such
a geometric representation?

Figures 3 and 4 both display complete graphs of the function f(x) = xe. 9x4+ 24x2- 16.
Students who have little or no experience with the effects of scaling have great difficulty
recognizing these two geometrical representations as being of the same function. (Our
colleagues in science experience this difficulty on a regular basis.] Regular useof graphing
technology has basically eliminated this problem.

3.00

100

-4110

-,----
-1.21 -1.0 .

1

1.10 1.00 1.00 4.CO

-1.00

-2.00

Figure 1. The graph of f(x) = xa 9x' + 24x2 - 16 in 15,5(by (.3,31

7

100

400 -4 00 -400

-200

103 4.00 600 000

Figure 2. The graph of f(x) = 9x' + 24x2. 16 in (.9,91 by 0,5]

10.0

10.0

-11.00 400 -400 100 1.00 400 403 0.00

V
-700

Figure 3. The graph of f(x) = 9)(4+ 24x2. 16 in 9,9] by (25,251

8

4,

a.

20.0

10.0

-too -3.01 -3.00 -I 00 1.05 3.00 4.03

-10.0

-30.0

Figure 4. The graph of f(x) = x6 - 9x4 + 24x2. 16 in [5,51 by [25,251

For our second example, let's turn to a purely geometric one. Imagine that you have
three vertices of an equilateral triangle labeled T, R, and L for top, left and right
respectively. These vertices will be associated with the rolling of a die. To begin, select a
random starting point, P0, and mark it with a dot as shown in Figure 5. Subsequent points,
P,, Pt P3 P,, are heated by placing dots at midpoint locations according to the following
algorithni.

Roll the die.
Move halfway from the last point marked to the vertex randomly selected by the roll
of the die according to the following rule. Move towerd T for rolls of 1 and 2, toward
L for rolls of 3 and 4, and toward R for rolls of 5 and 6.
Mark the midpoint by placing a dot at its' location.
Repeat the process by rolling the die again.

Figures 5.8 show the results of the first three rolls (3, 5, 1, ...) of the die. The first roll
of 3 required moving halfway from Po toward vertex L and placing a dot at the midpoint,
P,, of segment PoL. Subsequent midpoints, Ps and P3 are shown in Figures 7 and 8. A most
significant question is prompted by the execution of this algorithm. What will the final
picture containing all points Pa, as n approaches co, look like? This question will remain
unanswered for the time being to give you an opportunity to reflect on your own
visualization power as it relates to this example.

9

T

Po

Lo CR

Figure 6. Pick a starting point, Po

Lo

P1

T

P2

Po

oft

Figure 7. Plot P2

P1

T

Po

Le R

Figure 6. Plot P1

Figure 8. Plot P8

The third and final example deals with the iteration of the logistics function f(x)= ax(1-x)
for initial values in (0, 1]. The process of iteration is the result of doing something overand
over again, repeatedly. Iteration is the processof repeatedly forming the composition of a
function with itself This is illustrated in the expresion below in which an argument is
repeatedly passed through the same function f(x) in a cyclical fashion.

xt, o fiRxdi 0 Ofif(xdp o

Another way of thinking about iteration is to consider some initial argument xo and
obtaining the functional value Rico) = xl. Then using x1 as the next argument and obtaining
the next functional value x2, and so on. The resulting sequence of iterates or arguments are

X -+ X2 -9 X3 -4 X4-4, X3 -.4 xo ... -4 x.

The sequence of iterates shown above is the focus of this final exampli. We are
interested in determining if we can predict the long term behavior of the iteration sequence
for different parameter values of a, and also whether or not these patterns are dependent
on our choice of the initial value, xo.

We consider here two different numerical cases. Let's iterate the initial value xo= 0.20
in two different functions; f(x)= 2.8x(1-x) and f(x)= 3.18x(1-x). For f(x)= 2.8x(1-x), we have
the sequence 0.20, 0.44, 0.68, 0.60, 0.67, 0.61, 0.66, 0.62, ... , and for f(x)= 3.18x(1-x), we have

0.20, 0.50, 0.79, 0.52, 0.79, 0.52, 0.79, ... The first iteration sequence appears to be
converging, but the exact value is not yet apparent. In the second iteration sequence, we
can already see, after only four iterations, that we have period-two cyclical behavior.

1,000

0.100 A

1,:..1

0.00

I

0.100

1,1

030
1 1 i'

i I I.

1 ,1

I . 11

4200 0.200 0.400 0.100 0100 I 1.200 1.00 1100

Figure 9. Iterating f(x) = 2.8x(1-x)

00

Both of the numerical iteration sequences for f(x) = 2.8x(1-x) and f(x)= 3.18x(1-x) can
be better understood through the use of graphing technology. Figures 9 and 10demonstrate
the same iterations, but only in a visual sense. The dimension of the viewing window in each
case is (-0.5, 1.51 by (.0.1, 1.1).. The iteration patterns in Figures 9 and 10 are marked
along the horizontal axis with several "°" to show their converging long 'erm behaviors.

The staircase iteration pattern is also a very powerful visual tool for h elping understand
the iteration process. When drawing this staircase pattern with vertical and horizontal
segments, it is important to always first go vertically from the initial point to the function,
then horizontally to the line y = x, then vertically back to the function, then horizontally
back to the line, continuing the process repeatedly.

For the function f(x)= 4x(1-x) shown in Figure 11, each reader is asked to carefully
perform seven steps of graphical iteration with a pencil and straight edge.

If iteration is performed for an extended number of iterations, the resulting sequence
of iterates will be void of any observable pattern. This unpredictable behavior of nonlinear
dynamics known as chaos was only first completely described in 19'76 by Mitchell J.
Feigenbaum, one of the modern fathers of chaos theory. Feigenbaum was the first to explain
the phenomena for the transition from stable predictable dynamic behavior to that of
chaotic or near-random behavior associated with small changes in a given parameter, such
as a in the logistic function mentioned earlier. Today, the discoveries of researchers such
as Mitchell J. Feigenbaum, Benoit B. Mandelbrot, Heinz-Otto Peitgen and many others
are well within the reach of most secondary students given the appropriate graphing
technologies.

LOX

0100 ..

0.000

1

0.200

I

1

O= 070D 0.000 DIM
-W-

011100 I X0 1.00 I MO

Figure 10. Iterating f(x) = 3. 18x(1.x)

12 2 .1

0 JO

0.102

0.400

0.200

4200 0.720 OAS 0000 0.122 1.700 1.400 102

Figure 11. Iterating f(x) = 4x(1-x)

Summary

Today we have all the evidence necessary to vigorously argue that contemporary
graphing technologies in the hands of students will enhance their learning. It is the duty
and responsibility of each of us to see that every school in our own local neighborhood has
the commitment, resources, and trained teachers to take advantage or the opportunities
afforded our children with the use of these technologies. I have often been known to ask the
question, "What is the school?," and then answered, "Whatever you and I choose to make
it!" It's in our hands, and we do make a difference!

Appendix

The first two programs can be used to enhance our understanding of two of the
examples presented earEcr and to illustrate the power of visualization through the useof
graphing technology. The third program, upon execution, produces the beautiful fractal
image of a fern through a simple random process using secondary algebra and geometry
concepts.

Chaos Game

This program provides an incredibly detailed and highly structured fractal image
known as the Sieroinski Triangle, from a purely random process. This beautiful visual
model is so very counterintuitive that it challenges our deepest sense of real: ty. The
following key strokes provide the essential steps for programming the Texas Instruments
Ti -81 graphing calculator.

13

2J

Select the program mode and enter an appropriate program name such as "The Chaos
Game."

Line Texas Instruments
1 :CIdDraw

*2 :Int (50Rand+1)->Rand
3 :0->Xmin
4 :1->Xmax
5 :1 - >Xscl

6 :0->Ymin
7 :1->Ymax
8 :0->Yscl
9 :Input

10 :X->A
11 :Y->B
12 :Lbl 1
13 :Int (3Rand)/2->X
14 :0->Y
15 :If X=.5
16 :1->Y
17 :(A+X)/2->A
18 :(B+Y)/2->B
19 :PT-On(A,B)
20 :Goto 1

* The " - >" represents the assignment key function performed by pressing the "STO --," key.

Graphical Iteration

This program provides a quick way of iterating the family of quadratic functions whose
parent function is the logistics function f(x) = ax(1-x). It allows for a more thorough and
extensive exploration of the notions central to an understanding of chaos. Execution of this
program requires that the user select the number of decimal places (0 to 10), input the
parameter value a, and select the initial value, I, with which to start the iteration process.
The following key stroke- again provide the essential steps for programming the Texas
Instruments TI -81 graphing calculator. Select the program mode and enter an appropriate
program name such as "Graphical Iteration."

Line Texas Instruments
1 :ClrOraw
2 :Disp "DCML PLCS"
3 :Input F
4 :0->R
5 :0->Xmin
6 :1->Xmax
7 :0->Ymin

0
14

8 :1->Ymax
9 :Disp 'AL

10 :Input A
11 :Disp *Pe
12 :Input 1

13 :DrawF AX(1-X)
14 :DrawF X
15 :Al-A11->J

16 :Line(I, 0, 1, J)

17 :Goto 2
18 :Lbl 1

19 :AI- All - >J

20 :Line(I, I, I, J)

21 :012
22 :Line(I, J, J, J)
23 :Pause
24 :IPart ((10^F)J)/(10*9->J
25 :DIsp J

26 :Pause
27 :R+1->R
28 :J->I
29 :If R>7
30 :End
31 :Goto

* The ".>" represents the assignment key function perfGrrned by pressing the "STO -4" key.

A Fractal Fern

This program provides another visually incredible fractal pattern. This fractal model
has a striking resemblance to the plant world of ferns as we know them. The following key
strokes again provide the essential steps for programming the Texas Instruments TI.81
graphing calculator. Select the program mode and enter an appropriate program name
such as "A Fractal Fern."

Line Texas Instruments
1 :ALL-OFF
2 :C1rHome

*3 :0->Xmin
4 :100 >Xmax
5 :100->Xsd
6 :0->Ymin
7 :100->Ymax

:100->Ysd
9 :C1fOraw

10 :Disp "HOW MANY POINTS*

15 4

11 :Input N
12 :30->L
13 :64->W
14 :W +L - >Q
15 :0.5W->E
16 :0.57W->F
17 :0.408W->G
18 :0.1075W->H
19 :0->R
20 :-0.036W->S
21 :0.0893W->T
22 :0.27W->U
23 :E->W
24 :0->Y
25 :0->I
26 :Lbl 1
27 :Rand ->D
28 :If D>.02
29 :Goto 2
30 :E->A
31 :0.27Y+R->B
32 :Goto 5
33 :Lbl 2
34 :If D>,17
35 :Goto 3
36 :-0.132X+0.263Y+F->A
37 :0.248X+0.224 Y+S->B
38 :Goto 5
39 :t.b13
40 :If D>.3
41 :Goto 4
42 :0.17X-0.215Y+G->A
43 :0.222X +0.176Y+T->B
44 :Goto 5
45 :Lbl 4
46 :0.781X+.034Y+H->A
47 :-0.032X+0.739Y+U->B
48 :LW 5
49 :PT-On(1.5(A+L)-40,139-1.5(0-B))
50 :A->X
51 :B->Y
52 :I +1 - >I

53 :If !N
54 :Goto 1
55 :End

* The ".>" represents the assignment key function performed by pressing the "STO -4" key.

16 c.

References

Browning, C. (1988). Characterizing levels of understanding of functions and their
graphs. Unpublished doctoral dissertation, The Ohio State University, Columbus,
Ohio.

Demana, F., & Waits, B. K. (1990). Precalculus mathematics, a graphing approach.
Reading, MA: Addison-Wesley Publishing Co.

Demana, F., Schoen, H., & Waits, B. (1993). Graphing in the K-12 curriculum: The
impact of the graphing calculator. In T. Romberg, E. Fennema, & T. Carpenter
(Eds.), Integrating research on the graphical representation offunctions. Hillsdale,
NJ: Lawrence Erlbaum.

Dunham, P. (1990). Mathematical confidence and performance in technology-enhanced
pre-cakulus: Gender-related differences. Unpublished doctoral dissertation, The
Ohio State University, Columbus, Ohio.

Farrell, A (1989). Teaching and learning behaviors in technology-orientedpre-calculus
classrooms. Unpublished doctoral dissertation, The Ohio State University, Colum-

bus, Ohio.
National Center for Research in Mathematical Sciences Education. (in press). Graphs

and functions. Demana, F., Schoen, H.L., & Waits, B. K. Graphing in the K-12
curriculum: The impact of the graphing calculator. Madison, WI: University of
Wisconsin.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation
standards for school mathematics. Reston, VA: NCTM.

Peitgen, Jurgens, & Saupe. (1991). Fractals for the classroom, part one. New York:

Springer-Verlag.
Peitgen, Jurgens, & Saupe. (1992). Fractals for thq classroom, part two. New York:

Springer-lrerlag.
Peitgen, Jurgens, Saupe, Maletsky, Perciante, & Yunker. (1991). Fractals for the

classroom: strategic activities, volume one New York: Springer-Verlag.
Peitgen, Jurgens, Saupe, Maletsky, Perciante, & Yunker. (1992). Fractals for the

classroom: Strategic activities, volume two. New York: Springer-Verlag.
Rich, B. S. (1990). The effect of the use of graphing calculators on the learning of

functions, concepts in pre - calculus mathematics. Unpublished doctoral disserta-
tion, University of Iowa, Iowa City, Iowa.

Yunker, L.E., Crosswhite, F.J., Elswick, V.A, & Vannatta, G.D. (1991). Advanced
mathematical concepts. Columbus, OH: Glencoe Publishing Company (Merrill).

17 4 j

Chapter 2

Using Graphing Calculators to Teach High School Mathematics

LARRY KABER

KAREN LONGHART

In 1988, the mathematics department at Flathead High School, Kalispell, MT decided
to pilot test the WaitsiDemana Precalculus with a Graphing Approach text. Because our
school district had no money to pu rchase graphing calculators for the students, we were told
that it was not possible to run the test. We then decided that the only way to proceed with
the test was to persuade students to purchase their own graphing calculators. As a result,
a letter was sent to the students in the affected section, asking them to purchase TI.81
calculators. Instead of the angry phone calls that we expected, parents and students were
enthusiastic to try the project.

In the last four years, we have gone from 30 students buying graphing calculators to
over 300 students who own them! In cooperation with the Montana Council of Teachers
of Mathematics (MCTM), our department now acts as a purchasing agent for the State of
Montana so that we can buy the calculators in large quantities and get the most competitive
prices possible for our students. This approach frees up money from budget tight school
districts where it would be nearly impossible to ever acquire enough money to buy a
reasonable number of graphing calculators. So don't wait for your school district to come
up with the funds to purchase this affordable technology. Ask your students and their
parents to support your effort to enhance their children's mathematics education. The
response in our school has been fantastic! Students are enjoying their mathematics classes
more and they are anxiously awaiting the arrival of the TI-85. There was even anarticle
in the school newspaper giving the specifications on the TI.85!

For the students who can't afford to purchase their own calculator (there are
surprisingly few) we have purchased ten TI.81's for our library and the students can check
them out. Also, we have gone to local service clubs (Lions and Kiwanis, for example) and
asked them tc sponsor needy students.

19

Transformational Graphing

Encouraging students to purchase their own graphing calculators has many advan-
tages. When a student owns his/her own calculator, exploration and discovery can easily
take place at school, at home, or even when riding the school bus. Like any high-tech device,
students tend to spend more time using it if they own it.

One of our objectives is that students learn the graphs of many "Parent Functions." For
example, by the end of fourth year of mathematics, we expect our students to know
"intimately" what the graphs of

y=x
y=x2
y=x3
y=x°
y=1/x
y=az
y= sin x
y cos x
y = tan x
y= Ix'
y= x and
y = logb x

look like. They also learn how the graphs can be transformed or manipulated with numbers.
For instance, they learn the transformations of y = A*f(B(x C))+D so that they can create
any graph that they wish. These transformations are general and apply to any function.
Their properties are as follows:

Transformations

A: Al1 > 1 produces a vertical stretch by a factor of A
I A I <1 produces a vertical shrink by a factor of A
A < 0 produces a reflection over the x-axis

B: I B I >1 produces a horizontal shrink by a factor of 1/B
I B I < 1 produces a horizontal stretch by a factor of 1/B
B < 0 produces a reflection over the y-axis

C: produces a horizontal shift C units
,): produces a vertical shift D units

The order of transformations is to first perform vertical or horizontal stretch/shrinks
and/or reflections, followed by vertical or horizontal shifts.

Once the students understand how to graph parent functions and how to perform
transformations, they can graph almost any function encountered in high school algebra
and introductory calculus. For example, to graph y = -2 * Log (-(x-3))+ 1, the student would
proceed as follows:

1. Recognize that the parent function is y = Log x and sketch the graph. Notice that the
graphing utility does not produce a correct graph of this function as it does not show
any asymptotic behavior. This asymptotic behavior occurs in many different func-

20

tions, which further illustrates why students still need to know what the parent
function looks like. They also need to realize that discrete graphing utilities produce
visual approximations rather than exact graphs.

2. Reflect the graph over the x axis and introduce a vertical stretch by a factor of 2 to
produce y = -2 * Log x.

3. Reflect the graph over the y axis to produce y = -2*Log (-x).
4. Shift the graph left three units to produce y = -2*Log (-(x - 3).
5. Shift the graph up one unit to produce the final graph.

With instruction and practice in these pi ocedures, students develop a strong sense of
how to graph by the use of parent functions and transformations. Along with this sense of
graphing comes an understanding of domain and range. Data analysis and curve fitting are
a natural extension of this understanding.

Sequences and Series Graphically

Many students have trouble understanding the relationship between arithmetic and
geometric sequences and series. They also fail to make the comiection between arithmetic
sequences and linear functions, and geometric sequences and exponential functions. Using
graphs and the following program, these problems can be cleared up.

PRGM1: SEQUENCES
:1 -> Xmin
:96 -> Xmax
:10 -> Xscl
:-100 -> Ymin
:100 -> Ymax
:10 -> Ysd
: Disp 'ARITHMETIC (0) OR GEOMETRIC (1)'
:Input A
:KA= 0
:Goto 1
:Disp 'FIRST TERM'
:Input T
:D1sp 'COMMON RATIO'
:Input R
:"T * R A (X - Nte,

:"T - RA X)/ (1 - R)" -> Y2
:Dispgraph
:End
:Lbl 1
:Disp 'FIRST TERM'
:Input T
:Disp 'COMMON DIFFERENCE"
:Input D
:"D(X - 1) + -> Y,

21
/4,

:1(X2)*(2T + D(C - 1))- Ni2

:Dispgnaph
:End

This program will graph any arithmetic or geometric sequence and its series. The
student can trace on the graph and find any of the first 96 terms of a sequence or the sum
of a series. One example that shows how this program illustrates arithmetic sequences and
series graphically produces the arithmetic sequence -8, -7.5, -7,... by letting T = -8 and D =
0.5. The students can easily see the linear function that describes the sequence and the
quadratic function representing the aeries. To illustrate geometric sequences and series,
produce the geometric sequence of 1, 2, 4, 8,... by letting T = 1 and R = 2. Next, let T = 40
and R = 0.5 (ie. , 40, 20, 10,...). This demonstrates the concept of what a convergent geometric
senes means graphically.

Data Analysis

Using the graphing calculators every day in class helps students become "graphically
literate" and helps them develop a thorough understanding offunctions and their behavior.
Data analysis is helpful in tying all of these concepts together. Two examples follow where
students can model problems with linear, exponential or logarithmic regression curves. In
these problems, we require the students to decide which regression curve bests fits the data,
and why.

Task #1: Some researchers believe that women runners might start beating men in world-
class competition within a few generations. Are the researchers correct? In the table below
are the winning times for the men's and women's 200 meter track and field event at the
Olympics from 1960-1988.

200 meters

Year Men Women
1980 20.5 24.0
1984 20.3 23.0
1968 19.8 22.5
1972 20.0 22.4
1976 20.2 22.3
1980 20.2 22.0
1984 19.8 21.9
1988 19.7 21.3

Analyze this data using either a linear, exponential or logarithmic regression equation and
make a prediction as to whether women will actually ever catch up to men in the 200 meter
race. After you have analyzed this data mathematically, state reasons why you do (or do
not) support this analysis.

22

J.3

Using a graphing calculator and its statistical features, a pair of regression equations
can be found If this data is modeled with logarithmic regression curves and then graphed,
it can be shown mathematically that there appears to be a time when indeed women will
catch and surpass men in this event. This problem brings up an issue that can be debated
by scientists concerning the physiology of men versus women. A third issue that we discuss
is the danger of extrapolating too far into the future from the data. This problem is well
received by students because of their interest in sports.

Task #2 What year was it 1 million seconds ago? What year was it a billion seconds ago?
What year was it a trillion seconds ago? Surprising? With your new found appreciation
for the magnitude of a trillion, look at the U.S. federal debt.

Year Federal Debt
1980 909,000,000,000
1981 994,000,000,000
1982 1,100,000,000,000
1983 1, 400,000,000,000
1984 1,600,000,000,000
1985 1,800,000,000,000
1986 2,100,000,000,000
1987 2,300,000,000,000
1988 2,600,000,000,000
1989 2,900,000,000,000
1990 3,200,000,000,000
1991 3,600,000,000,000

Because the amount of the federal debt depends on the year, let x equal the number of
years after 1980 and let y equal the dollar amount of the federal debt. Use the statistical
capabilities of your graphing calculator and calculate the linear regressionand exponential
regression curves for this data. Graph the two curves and use the graphs to approximate
the federal debt in 2000. What is the difference in the twoforecasts? Which onedo you think
is more accurate? In the linear regression equation, what does the slope of the function
represent in the real world? In the exponential regression equation, what does the base of
the exponent represent in the real world? This problem can lead to further discussions in
a economics class or a history class as to what the implications are for such a high national
debt.

Graphing Calculators and Calculus

Topics from calculus which can be enhanced through visualization include: end
behavior of a function, limits at a point, critical valuee of a function, and numeric integration
procedures, to name a few. The purpose of some of the topics of traditional calculus is to
provide an analytic and algebraic approach for discussing functions. Maybe the emphasis
on finding critical values algebraically is not needed, especially when technology can be

23 .-
fj .4

used for the same purpose. The mathematical modeling of functions is much easier to
handle with graphing utilities. To understand that most function models are piece-wise
functions means that we need to have a clear understanding of parent functions and their
transformations.

Visualizations of the end behaviors of various functions provide students with an
intuitive basis for the concept of a limit, especially as the independent variable becomesvery
large, or very small. This visual support adds validity to the abstract approach generally
used in a traditional calculus course, which typically involves the use of differentiation.
Furthermore, divergent and convergent sequences can now be discussed very intuitively.

The relationships between functions and their inversesare much easier to discuss with
visual support, especially in the parametric form. For example consider y = e(-4.2 with a
domain of [Om) and the inverse function f (x) --4(-hix). This latter function will bothermost
students because it involves taking the square root of a negative number; but as soon as you
make a visual representation of the inverse function, it becomesvery apparent that (4m),
for a domain of (0, 1] is a positive real number.

Investigating inequalities using a graphing utility gives students another tool to use.
Consider the following inequalities:

x2+4x z 4x, (2x2.3x-20)/(x+3) < 0, sin2x+cos2ac k 2X.

Graphically, the solutions are found with great ease andvisual clarity. For example, to solve
the first inequality with your graphing utility, simply input each side of the inequality in
the form of Y1 = x2+4x and Y2= 4x, The visual solution to the second inequality is done by
graphing the rational function Y1= (2x2.3x-20)/(x+3). The third problem would be best
solved by letting Y1= sin2x+cos2x-2c and then using the trace key to find the zeros. Using
the trace key and considering the error, you can produce accurate solutions to many
problems of this type.

In the case of a transcendental function combined with an algebraic function, the
solution might be attainable only through the use de graphing utility. An example would
be to find the solution of f(x) = g(x) where f(x) = x2 and g(x) = 21. Ifyou graph both of these
functions you might miss at least one of the solutions. However, ifyou graph h(x)=x221, it
becomes obvious, with a correct choice of range that there will be three solutions.

New Tocls New Teaching

The teaching and learning of mathematics for secondary schools has once again taken
a giant step. In this chapter we have presented some uses of visual representation in data
analysis. However, graphing calculators can affect all of the topics of a typical secondary
school mathematics curriculum. Two caveats are, (1) not all students learn in the same way,
and (2) as teachers we teach as we were taught. The power of visualization has allowed
mathematics students and teachers to address both caveats. Asa student you have another
avenue to follow in interpreting mathematical information and making predictions. As a
teacher you have a new and creative way to present information. AP-Calculus curricular
materials have been static for many years, however the process of teaching has becomevery
dynamic. The realization that all secondary school mathematics can be taught using
manipulatives has made calculus easier to comprehend for some students. We consider the

24 j

visual approach to be manipulative. We need to consider the use of electronic visual
representation as a new delivery system for this subject. The graphing calculator canbe a
manipulative tool for many of our courses.

During the past decade it has been a goal in many high schools for all mathematic
classrooms to be equipped with a computer and monitor or projection device. Once that goal
was met, it h ad to be adjusted because of newertechno:ogy, namely the graphing calculator.
It is now just as important for us to have overhead graphing calculators as computers. A
properly equipped mathematics classroom should have both. The power ofvisualization
along with algebraic models allows more students access to this and practicalmathematical
topics. For example, more students fail calculus because of poor algebra skills than for any
other reason. With the use of visualization maybe more students can find success in the
study of calculus. We would hope that college level educators are also adjusting to these new
technologies.

Conclusion

As with other secondary school mathematics topics, the power of visualization allows
students to spend more of their time on problem solving and lees on mechanicalmanipu-
lations. A majority of elementary calculus is spent on functional analysis so that a visual
model can be produced. With the new technologies this time might be spent on applying the
calculus to real world problems. Furthermore, the support given by visual representation
to algebraic processes brings a whole new dimension to mathematical thinking and
modeling.

25:0 0

Chapter 3

Advanced Technologies as Educational Tools in Science:
Concepts, Applications, and Issues

DAVID D. Kinks
PHILIP J. SMITH

STANLEY L HELGESON

ARTHUR L WHITE

Advances in conceptual approaches, as well as in software and hardware technologies,
offer powerful methods for enhancing the use of computers as educational tools in scieuce.
The use ofhypermedia to provide non-linear access to text, graphics, sound and video is one
such important advance (Conklin, 1987; Halms, 1988; Glusko, 1989; Norman, 1988). The
incorporation of "intelligence" in a tutoring system is another advance (Anderson, Boyle&
Reiser, 1985; Chuicey, 1984; Kearsley, 1987; Sleeman & Brown, 1982; Wenger, 1987; Woolf
& McDonald, 1985). While there have been a variety of efforts to make use of these
advances, there are many important, unanswered questions that need to be dealt with in
order to assess the effectiveness of these technologies and to guide the design of effective

tutoring environments.
This chapter describes the concepts, applications and issues associated with two rather

different technologies, the use of hypermedia [including level3 interactive video (IVD)] and
intelligent tutoring systems, in science education. One approach [as demonstrated by the
"Gait Analysis Instruction Tool (GAIT)," "Hyperequation, " and Illyperscience 4561
involves using hypermedia techniques (including IVD) to provide instruction, to assess the
process of problem solving, and to provide a context for problem solving respectively. A
second approach (as illustrated by the "Transfusion Medicine Tutor" later in this chapter)
provides a problembased learning environment (Barrows, 1988) in which intelligent
tutoring capabilities are incorporated to provide feedback and guidance to the students.

27

i

Hypermedia and Level-8 Interactive Video

In 1945 President Roosevelt's science advisor, Vannevar Bush, wrote in the Atlantic,
describing a (hypothetical) tool that would link related pieces of information. Such a tool
could be used to manage information in new and innovative ways, by forming omni-
dimensional associations or links (Tsai, 1988; Marsh & Kumar, 1992). Bush has been
credited witF being the pioneer of this idea of "using a machine to store connections between
pieces of information" (Smith, 1988, p. 33).

Hypermedia is based on this idea of linking related information. It is an ;rtteresting
extension in that very different types of information and information displays are linked,
ranging from text and simOe graphics to video. According to Halasz (1988), hypermedia
represents "a style of building systems for information representation and management
around a network of multi-media nodes connected together by typed links" (p. 836). The
design of a hypermedia environment is supported by software such as the "HyperCard
(TM)" and "SuperCard (TM)," which allow the creation of networks of interconnected
electronic cards, or screens, to represent a collection of related ideas in the form of visual
text and graphics, and to facilitate the organization, storage, and retrieval of information
(Halasz, Moran & Trigg, 1987; Halasz, 1988). In such environments, each screen is thought
of as a "notecard" (node) and the associated concepts are linked via electronic "buttons"
(links) (Dede, 1987; Halasz, 1988).

In addition to linking each card with additional printed information, links can also be
made to nodes containing "information" such as audio or video (Mulhauser, 1992; Ambron
& Hooper, 1988; Aambo & Hovig, 1988). For example, in level-3 interactive video systems,
software such as HyperCard (TM) in an external microcomputer is used to control the
learner-video interaction allowing "students to manipulate audiovisual materials stored on
the videodisc in numerous ways" (Litchfield & Dempsey, 1992, p. 40). Areasonable amount
of educational applications of hypermedia are in the level-3 interactive domain.

Prwonente of hypermedia suggest that it can be used effectively to support learning
for a number of reasons:

1. The use of audio and video displays make it possible to provide richer environments
in which information is provided in real-world contexts (Kumar, 1991a; Hofwolt,
Kumar & Altman, 1991; Litchfield & Dempsey,1992). Such contexts arguably serve
to motivate students, as well as enhance recall of important points.

2. The use of links to easily access related knowledge encourages students to explore
these relationships. The assumption is that "the more links that can be formed
between existing knowledge and new knowledge, the better the information will he
comprehended and the easier learning will be" (Jonassen, 1988, p. 13).

Intelligent Tutoring Systems

Over the last two decades, there has been a great deal of interest in the development
of intelligent tutoring systems (Anderson, Boyle & Reiser, 1985; Clancey, 1984; Sleeman
& Brown, 1982; Wenger, 1987). The assumption behind this research has been that, with
greater "intelligence," computer systems can provide more adaptive and therefore more
effective tutoring. According to Woolf (1987) the goals of intelligent tutoring systems

28

3

include representing knowledge, monitoring student learning, tailoring instruction to the
individual learning needs of students and providing a macro context for learning.

The goal of this research, then, has been to build highly adaptive teaching machines.
These computer systems not only have knowledge ofhow experts perform problem solving,
but also have other knowledge relevant to teaching. Included is knowledge of students'
common "naive conceptions" and errors. Also included is knowledge about how and when
to apply various teaching strategies. Some intelligent tutoring systems (ITS) design
concepts are described below.

ITSs typically have three major components: The "expert system ," the "student model"
and the "tutor." The knowledge provided by these components is used in a varietyof ways

to support interactive teaching.
The expert system provides a representation of the knowledge and problem solving

processes consistent with correct expert performance. This knowledge is used for two
purposes: To help detect errors on the part of a student, and to provide supporting
explanations and teaching about correct performance. One function if this expert knowl-
edge, then, is to help the system develop its "student model" for a given student (a
representation of what the computer thinks the student does and does not know). Students
may differ from the expert model in that they may be missing some of the declarative or
procedural knowledge important for expert performance, or they may have incorrect or
naive declarative or procedural knowledge. Another function of the expert module is to
support the tutoring module in providing explanations and guidance to the student.

The student model for a given user (student) is developed by observing the correct and
erroneous performances of the student. To make inferences from observed behaviors, the
computer makes use not only of its expert knowledge (to answer the question: Does this
student's performance differ from that of an expert?), but, also, of a collection of knowledge
about stereotypical incomplete or naive conceptions that students often have. Thus, like an
expert human tutor, the ITS knows what types of naive conceptions students typically have,
and can infer their existence from the errors a student is making.

Tutoring involves more than determining what naive conceptions and areas of
ignorance a student has. Thus, the "tutor" must make use of the knowledgeprovided by the
"expert system" and also of the insights provided by its "student model." The "tutor" must
implicitly or explicitly consider alternative teaching methods based on the current context
(and its interactions with the student up to that point). In discussing the design of an ITS,
Collins, Warnock and Passafiume (1975) suggest a number of teaching principles,such as:

1. Asking the student to parrot what she/he has just read is "a mode of recall that leads
to little or no long-term retention" (p. 70);

2. Asking review questions covering previously taught material when it comes up in
another context is an effective way to reinforce learning;

3. Asking a question about the student's wrong answer and not simply teaching the
student the right answ when he/she makes a mistake helps "the student remember
the distinction" (p. 73).

Similarly, Woolf (1987) suggests selecting learning tasks which "illustrate similarities
among related phenomena'" (p. 232) and which provide "heuristic knowledge" (p. 239).
Thus, the literature on ITS research provides a great deal of insight into the design of
education ill systems, both at an architectural level and in terms of principles for effective

teaching.

29

Sample Systems and Research Issues

In order to highlight important research questions associated with the use of hyperme-
dia (including level 3 interactive video) and ITS technologies, specific applicat ions are
reviewed below.

Hypermedia Systems

The Gait Analysis Instructional Tool (GAIT) is an example of a hypermedia tutoring
system designed to teach aspects of orthopedics with case studies of real patients. This
system provides a problem solving environment in which students learn while answering
questions and analyzing complete patient cases (Barrows, 1988; Boring & Nutter, 1984;
Burnett, Mahoney, Chidley & Pierson, 1986; Cardiff, 1986; Irby, 1986; henry, 1985). GAIT
has two components. The first, written in SuperCard (TM) asks students questions and
provides access to text and video to help them learn. The second, written in C, provides
access to complete patient cases. GAIT runs on a Mac II using three color monitors. When
solving complete patient cases, students can request any of the data normally available to
a physician by clicking on the corresponding button (see Figure 1). The set of available data
is always displayed on the left screen.

t ell Screen Center Screen

Set of
Available Data

Selected Data

Table
Text

Graphic
Video

,11

Right Screen

Tutoring and
Help

Description of the
selected data and
discussion of its

implications for the
case under study

L Computer

Figure 1. Schematic diagram of GAIT display

When a particular piece of data is selected for viewing, it is displayed on the center
screen (see Figure 1), The data displayed may be a table (text), graphics or video. The
student can use the available data to make inferences (ruling out certain hypothesized
dysfunctions). If the student, has problems doing so, he/she can click on any data display
with the mouse and a help window appears. This help window includes written text
describing this datum in general, as well as providing a discussion of its implications for the
current case. Such full patient cases are suitable for more advanced students.

For novices, GAIT provides access to an on-line "book" (complete with table of contents,
index, and glossary) and a set of specific questions that students should be able to answer.
By clicking on an entry in the glossary, for instance, a definition appears in a pop-up
window. Specific sections identified in the table of contents also have associated graphics
and video, which can he displayed upon accessing that section of the "book." Figure 2 shows
this component of the system.

30

'2 0

(P
rio

r
Q

ue
st

io
n

...
...

...
. .

...
..

...
...

.

G
lo

ss
ar

y

S
t ...

In
de

m
'4

10
15

11
11

11
1M

lii
iii

iii
lli

i1
11

11

,4
M

11
11

11
llb

G
ai

t D
et

er
m

in
an

ts
F

irs
t D

et
er

m
in

an
t

S
ec

on
d

D
et

er
m

in
an

t
T

hi
rd

 D
et

er
m

in
an

t
F

ou
rt

h
&

 F
ift

h
D

et
er

m
in

an
t

S
ix

th
 D

et
er

m
in

an
t

S
ta

ir
C

lim
bi

ng
A

bn
or

m
al

 W
al

ki
ng

F
un

ct
io

na
l L

eg
 L

en
gt

h
C

irc
um

du
ct

io
n

H
ip

 H
ik

in
g

S
te

pp
ag

e
V

au
lti

ng
A

nt
er

io
r

T
ru

nk
 B

en
di

ng
P

os
te

rio
r

T
ru

nk
 B

en
di

ng

A
nk

le
 J

oi
nt

K
ne

e
Jo

in
t

H
ip

 J
oi

nt
lif

te

I
-;

 1
-1

4,
1t

,

4)
.

O
U

eS
tiO

nI
2

T
he

pa
tie

nt
 in

 th
e

m
ov

ie
, d

em
on

st
ra

te
s

al
l o

f
th

e
fo

llo
w

in
g

ex
ce

pt
 fo

r

O
A

C
irc

um
du

ct
io

n

E
H

ip
 H

ik
in

g

In
 T

oe
in

g
(N

ex
t Q

ue
st

io
1)

1

La
te

ra
l T

ru
nk

 B
en

di
ng

B
en

di
ng

 th
e

tr
un

k
to

w
ar

ds
 th

e
si

de
 o

f t
he

 s
up

po
rt

in
g

lim
b

du
rin

g
th

e
st

on
ce

ph
as

e
is

 k
no

w
n

as
 la

te
ra

l t
ru

nk
 b

en
di

ng
, o

r
m

or
e

co
m

m
on

ly
 a

s
T

re
nd

el
en

bu
rg

 g
ai

t.
T

he
 p

ur
po

se
 o

f t
hi

s
m

ov
em

en
t i

s
to

 r
ed

uc
e

th
e

fo
rc

es
 in

 th
e

ab
du

ct
or

 m
us

cl
es

 a
nd

hi
p

jo
in

t d
ur

in
g

si
ng

le
 le

g
st

an
ce

. L
at

er
al

 tr
un

k
be

nd
in

g
is

be
st

 o
bs

er
ve

d
fr

om
 th

e
fr

on
t o

r
ba

ck
. D

ur
in

g
th

e
do

ub
le

su
pp

or
t p

ha
se

, t
he

 tr
un

k
is

 g
en

er
al

ly
 u

pr
ig

ht
, b

ut
 a

s
so

on
 a

s
th

e
sw

in
g

le
g

le
av

es
 th

e
gr

ou
nd

, t
he

 tr
un

k
le

an
s

ac
ro

ss
to

w
ar

ds
 th

e
si

de
 o

f t
he

 s
ta

nc
e

le
g,

 r
et

ur
ni

ng
 to

 th
e

up
rig

ht
po

si
tio

n
at

 th
e

be
gi

nn
in

g
of

 th
e

ne
xt

 d
ou

bl
e

su
pp

or
t p

ha
se

.
T

he
 tr

un
k

be
nd

in
g

is
 fr

ec
..T

nt
ly

 u
ni

la
te

ra
l,

re
st

ric
te

d
to

 th
e

st
an

ce
 p

ha
se

 o
f o

ne
 le

g,
 a

lth
ou

gh
 it

. m
ay

 b
e

bi
la

te
ra

l,
th

e
tr

un
k

sw
ay

in
g

si
de

 to
 s

id
e

to
 p

ro
du

ce
 a

 g
ai

t p
at

te
rn

 k
no

w
n

as
w

ad
dl

in
g

F
ig

ur
e

2
S

am
pl

e
G

A
IT

 o
n-

lin
e

"t
xx

ik

f 1
4

4

A second way to use this component of GAIT is to try to answer the study questions.
When the student answers a question, GAIT provides feedback and tutoring. This tutoring
provides access to:

1. A context-sensitive table of contents that indicates the relevant sections of the on-line
"book" to read;

2. A video display in which an expert discusses the answer to that question (audio
feedback) while appropriate video (of a patient, for example) and graphics are
displayed.

In general terms, GAIT has three interesting features. First, information is displayed
in several different media (text, graphics, speech, and video). Second, this information is
linked as appropriate to provide easy traversal among related pieces of information. Third,
there are different conceptual approaches to accessing the information (browsing through
an on-line "book" vs. asking for tutoring in response to a particular problem). These three
features serve to illustrate the capabilities provided by hypermedia.

An interesting, yet challenging, application of hypermedia is in the design of assess-
ment, or evaluation tools. According to Shavelson, Baxter, Pine, Yu re, Goldman, and Smith
(1990), standardized paper-pencil tests are not sufficient to measure the process skills
involved in hands-on science instruction.

Simulations of hands-on problem solving while using computers to teach often serve to
develop higher order cognitive skills (Gilman & Brantly, 1988). But, such computer based
learning often lacks assessment systems that are "computer gradable" (Moore, 1989).

One potential solution to these problems is the use of hypermedia systems that are
capable of assessing the process of learning. Under the New Technologies Focus Area at the
National Center for Science Teaching and Learning, research on alternative assessment
systems using I lyperCard (in a Mac II computer) is in progress. Using custom developed
assessment software called "Ilyperequation" (Kumar, 1991b), the performance of high
school students in the task of solving stoichiometric chemical equations has been studied.

The term Hyperequation refers to an approach to writing and balancing chemistry
equations using HyperCard in Macintosh computers. Some of the features of
Hyperequation include easy operation using the computer mouse, immediate feedback,
and the ability to register information pertaining to the process of problem solving such as
the order of responses made by the students. In addition, Hyperequation also provides an
item by item score for each student. In effect, Ilyperequation not only substitutes for a
paper-pencil test involving balancing chemical equations, but also provides a non-linear
visual assessment, environment on a computer screen. A sample Hyperequation is shown
in Figure 3. See Figure 4 for a sample Hyperequation record storage.

Other advantages of Hyperequation include the following. Hyperequation is easy to
write using IlyperCard. It can be linked to databases of chemical indexes, electronic
configurations, chemical bonding, and HyperCard periodic tables in case the student wants
a quick review of some background information. As HyperCard software, Hyperequation
can be linked to selected video segments from professionally produced chemistry videos
(e.g., the "Periodic Table Videodisc" of Project Seraphim) through electronic buttons and
transformed into a tool for instruction in chemistry. Developments are underway to refine
I lyperequation to incorporate capabilities that would recognize and react to the problem
solving strategies employed by students.

32

4 3

Click below to go to another equation !

Ibis is the equation number 1

Ily Ill

11.1

.NIil.: .,

(lick either the '7' or the checkbox
and a menu will appear allowing
you to select and enter your answer

W.
The button with 5 fingers is darkened, so this
must be equation S You may return to the other
equations anytime

2H 2X0 + ?H3Z03 = ?EiX + ?H3ZO 4 + H2O

0 0
Quit the pmgram when youi
arc sure you're finished

L(:lick "I)one' to see if the equation was
done correctly You MUST click "l
to have 'our attempt recorded Done Quit

HyperCard

it 11

Rid ,, . II I'iil
!!I .

!tf

Figure 3. Sample I lyperequation (Copyright 1991 Dauid D. Kumar)

Name: Student 3

Date: 10/24/91

Time In: 2:23 PM Total Time: 13.7

Time Out: 2:37 PM

H 2SO4 + 2NaOH = Na2S 0 4 + 2H20
2

2. 2HCI + Na
2 3CO = 2NaCI + H2O + CO2

a
2 2

3. 2Fe(OH)3 + 3H2SO4 = Fe2(SO4)3 + 61420 DO [11

4. ZH 11304 + ZiCaS0 = Cal(PO4)2 + 3502 + 3E1 20
2 3 '

5. 2H2X0,
-1

+ 511,-3 Z°
"3

= ZHX + $H,Z04 + H2O
2 "1

3019

12 13
2 2 2
2 2 2

. El 0

TOTAL ERRORS

U
5

Figure 4. A sample display of I lyperequation Report (Copyright 1991 David D. Kumar)

33 4

Mother application of hypermedia in assessment is evident in an on-going project
reported by Martinez (1991) where an "IBM-compatible computer interface delivery"
platform has been used for the delivery of figural response assessment items in cell and
molecular biology. Martinez (1991) has used a "figural response item format" in a computer
environment which enables the measurement of knowledge that is difficult to express in
verbal or numerical forms. Using a set of computer screen tools activated by buttons (e.g.,
"move object," "rotate," "draw line"), chromosomes and molecular groups are moved on the
screen by students to re.,pond to various questions. One such question reads as follows:
"Given the D-glucose below, construct its L-glucose stereo-isomer using the template
shown." Martinez (1991) concluded that figural response assessment strategies, in combi-
nation with existing assessment methods, "broaden the kinds of thinking called for by
tests." Similar work in physics at the University of California-Santa Barbara in collabora-
tion with the California Institute of Technology has been reported by Shavelson, et al
(i 9fX))

HypermediaDesign Issues

One of the concerns in designing hypermedia systems is navigation (Jonassen, 1988;
March ionini, 1988; Smith, 1988), "knowing where one is , where one wants to go , and how
to get there from here," (Parunak, 1989, p. 47). Because of the passive nature of the links
provided by such systems, the user has to choose to pursue some path. This concern over
whether the student will choose to pursue the appropriate path to learn important material
raises a number of issues. First, the student must recognize that he/she needs help in
learning something and decide that it is worthwhile to do so. Second, he/she must decide
where to go to learn this material.

Thus, giving the user control is a double-edged sword. It may reduce tedium and give
the student a sense of control. It does not, however, ensure that important material will be
viewed, let alone learned, and "it is not clear how hy, lrmedia can best support learning and
instruction" (Jonassen, 1992, p. 4). A great deal of research remains to be done on how to
structure hypermedia (Gordon & Gill, in press) and how to influence students to make
appropriate use of the available links.

Level-3 Interactive Video Systems

"II yperscience 456" (I lofwolt, Kumar, & Altman, 1991) is an exampl ,fan application
of level-3 interactive video technology. Hyperscience presents counterintuitive events or
discrepant events (using a video disk) in order to stimulate curiosity, wonderment, critical
thinking, and a need for students to seek explanations for the observed phenomena. The
video disk interacts with a I lyperCard (TM) stack in a Mac II computer via a Pioneer 4200
videoplayer, with images displayed on a Sony color television.

Instead of looking at still photographs, in Hyperscience the learner gets a first hand
view of the counterintuitive event, in action on a color TV monitor. This capability enriches
the context of the learner-machine interaction. The topics include Air and Pressure,
Buoyancy, Characteristics of Matter, Heat, Light, Magnetism, Mechanics, Sound, and
Earth Science. An example of a I lyperscience 456 stack arrangement is shown in Figure 5.

31

4J

Mahn' pistachio 'heft

Mist Wm" Or. r pit
fattalm 1/01, la a 1.4«.1
I Ile

UIDEO

Figure G. Schematic diagram of I lyperscience (Ilyperscience was first presented al the
NSTA convention held in Houston TV, 1991)

I lyperscience is designed to support the teacher in introducing and reinforcing specific
science concepts, and in teaching problem-solving. It does so inseveral ways. First, a catalog
of carefully selected problems has been assembled for use by the teacher. Second,
appropriate teaching strategies such as discovery learning andverification experiments
using the laboratory are suggested to the teacher. Third, videos of the counterintuitive
events make them "real" and serve to stimulate thought and discussions by the students.
The normal mode of use is for the teacher to lead a class discussion using Hyperscience to
display video segments, or for the teacher to circulate among groups of students (each at
a computer workstation) and to engage them in group discussions. Outcome studies are in
progress.

This use of the computer to facilitate instruction and to stimulate discussions is further
evident in the "Teacher Education Project" (Goldman & Barron, 1990). In the Teacher
Education Project, an interactive video environment is employed to present videos of
contrasting instructional strategies and to initiate discussion among preservice science
teachers at Vanderbilt University. According to Goldman and Barron (1990), preservice
teachers who used the interactive videos in their methods class improved considerably in
classroom management practices and in several instructional strategies such as develop
ment of problem solving skills and higher ordercognitive skills.

The use of interactive video technology provides the learner with the opportunity to go
back over scenes and review the events. This can be particularly useful in problem solving
exercises in which the person is unable to note and remember all of the pertinent
information relevant to the solution of the problem. It, is also possible to "mark" a certain
point on the computer monitor or to make measurements of events shown by the image on

the videodisc.

35

'1 0

Events which take an inordinately long or short time can be slowed or speeded up for
more meaningful and reasonable observation within the time and facility restraints of the
classroom. Dangerous and otherwise inaccessible systems can be accessed and manipu-
lated through computer and videodisc technology. This allows students to experience
events that would otherwise be beyond their realm of personal experience by providing a
concrete, personalized experience to better understand important concepts in science.

Level-3 Interactive VideoDesign Issues

The design of level-3 interactive video raises a number of interesting questions about
the use of computers in education:

1. What role should the teacher, the student and the computer play? For example,
I lyperscience contrasts with traditional approaches to computer-aided instruction
(CAI) in that the teacher is actively involved in the on-going activities, probing,
providing feedback, motivating, and directing discussions. Although, like traditional
CAI, liyperscience provides a question and an answer, the teacher's role is enforced
because students do not enter an answer on the computer. Rather, they discuss their
ideas with the teacher. Thus, teachers can ask questions such as "What do we know
about this event?' "What do we need to find out?" and "How are we going to find out?"
in order to encourage students to perform their own investigations and arrive at
possible explanations. In addition, after developing the relevant background, the
teacher may pose questions such as "How can we use this information?' and invite
learners to explain their answers and responses to the class for further discussions.

2. Does observing video of an event (as opposed to the text - base'' description of the
event) stimulate and enhance reasoning and problem solving about that event, and
also lead to better long-term retention of lessons learned? In other words, does the
display medium affect the learning process?

3. How does embedding problem solving in a concrete setting through presenting the
problem episode in a video (as opposed to an abstract description of the relevant
phenomenon) improve learning?

An Intelligent Tutoring System

To highlight issues associated with the design of ITSs, consider the Transfusion
Medicine Tutor (TMT). Written in C and running on a Mac II with three color monitors,
TMT provides a problem solving environment similar to GAIT. In the case of TMT,
however, the problem solving task is the identification of antibodies in a patient's blood. This
is a complex abduction task in which masking and noise combine to pose a challenging
problem solving task (Smith, Galles, Fraser, Miller, Smith, Svirbely, Blazina, Kennedy,
Rudmann & Thomas, 1991).

The left screen displays the tests normally available to a technologist in a transfusion
laboratory as shown in Figure 6 (Smith, Miller, Fraser, Smith, Svirbely, Rudmann Strohm,
& Kennedy , 1991). The center screen displays the particular test result selected for viewing
from the set of tests on ;,he left screen. (See Figure 7 for an example.) The right screen is
used for selecting a final answer and for tutoring. (See Figure 8).

36

4

R
ul

ed
 O

ut
)

(C
on

fir
m

ed
)

J

2

H
ig

h
Li

gh
t

D
on

or

A
61

6

B
4
3
9

3
C

92
1.

.
4

D
1

t_
7

5
E

30
i-

6
F

80
4

7
09

22
8

H
52

3
9

17
10

10

A
ut

oC
tr

 1

C
as

e
1E

9

R
h

-h
r

C
E

ce

P
ol

ys
pe

ci
fic

 M
I6

 IS
, 3

7°
 A

lb
um

in
,

A
IIG

M
N

S
s

A
.;

V
t.

M
N

S
 s

o
+

 +
 0

+

0
+

+

o
+

o
+

o
O

+

O
0

+
0

+

4.
0

+

0
0

0
0

0
o

0 0 o

+ . 4 +

+ _ + +

o 0 o
0

+
0

+
4

0

0
+

+
+

0

0
0

+
0

0

0
0

+
+

0

0
+

0
0

0

+
0

+
0

0

0
0

+
+

0

C
E

c
e

f

0
4

0

0
0

+
0

O
+

+
0

+

O
+

0
4'

V
C

V
M

 N
 S

s

U
nl

 k
el

y

P P
s 0 0 P
i

Le
w

is

Le
/ l

t)

o
+

0 0

LP
os

si
bl

e
L.

Li
ke

ly

Lu
th

 'n
K

el
l

D
uf

fy
K

id
d

Lt
.?

1.
4

K
I

k
kf

l..
61

 F
11

1.
11

. u
,)

 ,.
.k

i,
xe

O
 +

4+
00

 0
+

0+
4

+
 0

+
00

+
0+

+
+

O
 0

+
0+

0+
O

 0
04

+
44

+
0+

00
0

1

4+
0y

.
+

 0
+

00
+

0
4

+
0

O
+

0
+

0
+

0
0

+
+

0
0

+
0

0
+

0
0

+

0
0

+
0

0
+

+
+

+

0
0

+
0

+
0

0
+

0
+

-
-.

..
..

.

Js
)

F
,,,

,F
tt

JO
 ,.

.0
 X

ga

O
0

+
0

O
0

O
0

O
+

0

0 0 0

0 0

+

+
0

+

Le
e

Li
o

Lu
' L

A
P

K
k

K
P

t

S
pe

ci
al

T
es

t M
et

ho
ds

T
yp

e
IS

37
°

A
H

O
 lg

0
R

T

01
0

.0

2+
0

2+
O

0
2+

O
j

0
0

2+
0

0
O

0
2+

2+
0

0

O
0

2+

O
I

0
1+

O
1

0
0

-- O
1

0
0

A
B

O
/P

h
In

te
rp

re
ta

tio
n

A
ns

w
er

4°

5 6 7 9 9 io
'

S

Fi
gu

re
 6

.
S

am
pl

e
T

M
T

da
ta

 d
is

pl
ay

4
3

B
E

ST
C

O
P

Y
 A

V
A

IL
A

B
LE

H
i g

hL
i 9

07

A
nt

ib
od

y
S

cr
ee

n
II

,
tP

os
t b

le
:

D
on

or
M

N
S

s
P

Le
w

is
 it

,

D
C

E
c

e-
i-

V
 J

W
M

N
S

 -
-i-

P
i

Le
3

[if
 U

.

1
A

61
8

+
+

oo
+

00
0+

o+
+

+
+

oo
2

84
39

+
o

+
+

00
00

+
+

+
+

+
o+

+
ca

se
:it

g
D

C
E

e
i

V
C

.
M

14
S

s
P

1
Le

l
la

i I
t

t

th
'n

K
el

l

k
K

p
Js

"

D
uf

fy
F

y
F

if
K

id
d %

.0

+
+

0
o

o
+

+
+

+
0

0
o

+
o

+
+

uf
Js

'
11

14 t
JX

41 0

Li
ke

ly
''.

S
pe

ci
al

T
yp

e

--
--

IS 2+ 0

T
es

t

37
°

0 0

C
on

fir
m

ed

M
et

ho
ds

A
H

O

0 2+

Ig
o

. R
T

4°

A
B

O
 /R

h
In

te
rp

re
ta

tio
n:

A
ns

w
er

:

B
ef

or
e

vi
ew

in
g

th
e

in
te

rp
re

ta
tio

n,
 m

ar
k

as
 m

an
y

an
tig

en
s

as
 p

os
si

bl
e

as
 L

IK
E

LY
, P

O
S

S
IB

LE
 o

r
R

U
LE

D
 O

U
T

.

E
vi

, I
nt

er
pr

et
at

io
n

11
11

1M
11

11
11

1V

Fi
gu

re
 7

. S
am

pl
e

di
sp

la
y

of
 th

e
fe

ed
ba

ck
 to

 s
tu

de
nt

C
as

e:
T

E
B

A
nt

i-s
he

te
ro

zy
go

us
'4

. T
he

re
fo

re
, a

nt
i-s

be

D
on

e
is

on
 c

el
l

ca
nn

ot

ru
le

d
ou

t.

P
re

vi
ou

s
C

es
el

I

N
ex

t C
as

e

Y
ou

 ju
st

 r
ul

ed
 o

ut
 a

nt
i-s

 u
si

ng
 c

el
l '

4,
w

hi
ch

 is

A
llo

an
tib

od
ie

s
D

a
c

4
E

0
he

te
ro

zy
go

us
 fo

r
th

e
s

an
tig

en
(c

on
ta

in
s

bo
th

 th
e

s
an

d

S
 a

nt
ig

en
s.

)
It

is
 n

ot
 u

su
al

ly
 a

 g
oo

d
id

ea
 to

 r
ul

e
ou

t

an
ti-

s
us

in
g

a
he

te
ro

zy
go

us
 c

el
l,

es
su

ch
 a

 c
el

l m
ay

C
1

ul

e
K

sh
ow

 a
 w

ea
ke

r
re

ac
tio

n
th

an
 a

 c
el

l
th

at
 is

 h
om

oz
yg

ou
s

fo
r

th
e

s
an

tig
en

 (
1

e.
 a

 c
el

l t
ha

t
co

nt
ai

ns
 th

e
s

an
tig

en
bu

t n
ot

 th
e

S
 a

nt
ig

en
).

 A
 c

el
l t

ha
t

is
 h

et
er

oz
yg

ou
s

fo
r

s

m
ay

 in
 fa

ct
sh

ow
 n

o
re

ac
tio

n
et

 a
ll

ev
en

 w
he

n
an

ti-
s

is
pr

es
en

t i
n

th
e

se
ru

m
, F

or
th

is
 r

ea
so

n,
 it

 is
 r

is
ky

 to
us

e
a

he
te

ro
zy

go
us

 c
el

l t
o

ru
le

 o
ut

 a
nt

i -
s.

I
f

k
i

v
1<

pa

C
'

M
F

y4

1,
N

0
s

LL
11

s
1,

..0

P
I

LY
4I

O
th

er
1

C
an

le
ft
i

Fi
gu

re
 8

. M
es

sa
ge

 in
 r

es
po

ns
e

to
 a

n
er

ro
ne

ou
s

ru
le

ou
t

When data such as those shown in Figure 7 are displayed on the center screen, the
student can mark intermediate conclusions in a manner analogous to markings presently
made on paper in the laboratory. He/she can highlight data, mark antibodies as ruled out,
etc. As a memory aid, these intermediate conclusions are propagated from one test to
another as the student explores various test results.

TMT differs from GAIT in that it has an expert system embedded in its architecture.
This expert system monitors the student markings (intermediate and final conclusions)
and provides feedback in response to errors. It also provides a discussion of an expert's
interpretation of any given set of data upon request.

Due to recent concerns related to the transmission of blood related diseases it is no
longer reasonable to conduct blood typing activities in biology classrooms using the
students' own blood. Use of this technology as in TMT enables students to explore blood
typing in a safe environment.

Tutoring Function

TMT monitors student inferences and requests for data. These actions are used to
detect errors (actions that run contrary to those of the expert model). Examples of such
tutoring behaviors are categorized below.

Inappropriate Test Selection. One class of actions performed by the student is a request
to run a particular test. TMT uses the data currently available to the student about that
case, plus its knowledge about the appropriate use of tests, to assess such duisions. If the
student has requested an inappropriate test, TMT detects the error and interrupts the
student. The interruption consists of a caution and an explanation of the basis for this
caution. TMT also provides suggestions about what to do next.

Testing for Understanding. Preliminary studies of student performances indicated
that students sometimes know enough to ask for the right test, but not enough to fully
interpret the results. Our expert human tutors frequently detected this by asking a
question at the appropriate point. TMT does likewise, presenting multiple choice questions
at points where students are likely to have misunderstanding

Erroneous Intermediate Conclusions. TMT also monitors for errors of omission and
commission. Since the student can mark intermediate conclusions on the displayed data
sheets, TMT can check to see whether the appropriate conclusions have been drawn. TMT
monitors for two types of errors: Drawing an incorrect intermediate conclusion (such as
incorrectly ruling out an antibody), and failing to draw a conclusion that the data support.

Erroneous or Questionable Final Conclusions. TMT also looks at the student's final
answer (indicated by clicking on buttons representing possible antibodies) and critiques it.
If, for example, the student has concluded anti- C is present alone in a case where anti-C and
anti-D are present, the system will point out the error. As part of this critiquing process,
TMT teaches the student methods for detecting his/her own errors.

TMTDesign Issues

The design of TMT raises a number of important questions. First, like the design of
Hyperscience, the role of the teacher must be defined. Informal evaluations of the TMT
suggest that its most effective use is not as a stand-alone teaching system, but as a learning
environment in a laboratory setting, where the teacher can circulate among students
working on TMT, asking questions and providing assistance.

A second issue involves how to design a system that can detect students' errors in a
timely fashion. The interface to TMT was explicitly designed to enable such error detection.
Because students have to request specific pieces of data and draw intermediate conclusions,
TMT can detect many errors immediately without being intrusive. Other types of naive
conceptions are handled by having the system actively probe with a question. A third issue
is the question of when to interrupt given that an error has been detected. Empirical studies
of expert human tutors suggest that such decisions involve complex reasoning (Galdes,
Smith & Smith, 1990) which is beyond TMTs current capabilities.

A fourth issue is raised by the use of the colored arrows used as feedback by TMT (in
Figure 7). The philosophy behind this design feature is that students should be given the
opportunity to develop their own explanations before looking at the computer's (Chi,
Bassok, Lewis, Reiman, & Glaser, 1989).

A fifth issue concerns the adoption of alternative learning strategies by students. Will
they simply look at the computer's answer or will they try to interpret the data on their own
first? What will they read of the computer's explanations? How do we influence them to
adopt effective learning strategies and help them modify their own learning strategies to
be effective? The literature on how people use documentation suggest that these are non-
trivial concerns (Wright, 1983). Multi-media feedback may be part of the answer.

Future Directions

The advanced technologies discussed above offer two approo.les to enhance learning.
Midro, Chiacariello, Olimpo, Perisco, Sarti, and Tavella (1988) '.iuggest that the integration
of these technologies can alleviate many of the shortcomings of hypermedia (including
level-3 interactive video) and intelligent tutors, and lead to the development of more
intelligent and flexible systems capable of making teaching and learning more efficient and
meaningfuL

Currently emerging technologies add yet further promise of increased flexibility and
efficiency. One example is the pen-based computer. These computers are completely
wireless, responsive to handwritten input, and capable of interaction with other systems.
The applications of this technology with its wireless portability and reduced interface
barriers are just beginning to be explored. It seems clear, however, that the instructional
potential of the pen-based computer is high, particularly when combining it with other
approaches such as hypermedia and intelligent tutoring systems.

Conclusions

The use of hypermedia (including level-3 interactive video), and the integration of
" intelligence" into tutoring systems, represent two important approaches for enhancing the
use of computers as educational tools. To date, however, most of the effort has gone into
exploring the implementation of such systems in attempts to identify alternative capabili-
ties and uses of these technologies. The result has been a number of interesting models.
Informal evaluations indicate that, these approaches can offer significant improvements
over traditional uses of computers in education. As outlined in this paper, however, there
are numerous questions which remain to be answered in order to develop an empirical basis
for guiding the design of such learning environments. For example, Clarke (1990) in a

41 ;))

review of computer usage found sex discrimination favoring male students. To what extent
this discrimination is revealed with these advanced systems remains to be determined.

GAIT, Hyperequation Project, and similar on-going projects are relatively novel
applications of hypermedia in developing alternative science assessment technologies.
Hyperscience 456 and Teacher Education Project may be classified as examples of learning
with computers (Luehrman, 1982 February, September), and one of the most useful
applications of "level 3IVD" systems. The Transfusion Medicine Tutor, an example of
building intelligent tutors using expert systems technology, is a very promising practical
application for science education.

Such systems are nothing more than advanced technologies. Therefore, how they are
used in science instruction will determine their future success in education. The applica-
tions presented in this paper are a glimpse of what these advanced technologies can do for
education. These technologies offer great hope for science education of tomorrow, and offer
the potential to transform science learning into a meaningful, interesting, and practically
relevant experience. To accomplish this goal, however, we must go beyond the implemen-
tation of interesting systems. We need to use such systems as testbeds to collect empirical
data on the effectiveness of the underlying design concepts.

References

Aambo, K. H., & Hovig, I. (1988). The term hypermedia & thought-experiment hypatia.
Proceedings o f Research in Networks and Distributed Applications (pp. 259.270). Wien,
Amsterdam: North-Holland.

Ambron, S., & Hooper, K (1988). Interactive multimedia. Redmond, WA: Microsoft Press.
Anderson, J., Boyle, C., & Reiser, B. (1985). Intelligent tutoring systems. Science, 228, 456-462.
Barrows, H. S. (1988). A taxonomy of problem based learning. Medical Education, 22, 481-486.
Boring, J. R., & Nutter, D. 0. (1984). Analytical thinking. Educating students for the

practice of modern medicine. Journal of Medical Education, 59, 875-880.
Burnett, C. N., Mahoney, P. J., Chidley, M. J., & Pierson, F. M. (1986). Problem solving

approach to clinical education. Physical Therapy, 66, 1730-1733.
Bush, V. (1945, July). As we may think. Atlantic, pp. 101-108.
Cardiff, R. D. (1986). Teaching problem solving in pathology. Archives of Pathology and

Lal'oratory Medicine, 110, 780-783.
Chi, M., Bassok, M., Lewis, M., Reiman, P., & Glaser, R. (1989). Self-explanations: How

students study and use examples in learning to solve problems. Cognitive Science, 13,
145-182.

Clarke, V. A. (1990). Sex differences in computing participation: Concerns, extent, reasons
and strategies. Australian Journal of Education, 34(1), 52.66.

Clancey, W. (1984). Methodology for building an intelligent tutoring system. In W. Kintsch,
G. Miller, & P. Poison (Eds.), Methods and tactics in cognitive science. Hillsdale, NJ:
Erlbaum.

Collins, A, Warnock, E., & Passafiume, J. (1975). Analysis and synthesis of tutorial
dialogues. In G. Bowe (Ed.), The psychology of learning and motivation. NY: Academic
Press.

Conklin, J. (1987). Hypertext: An introduction and survey. IEEE Computer, 20(9), 17-41.
Dede, C. J. (1987). Empowering environments, hypennedia and microworlds. The Comput-

ing Teacher, 15(3), 20-24.

42
r-

Galdes, D., Smith, P. J., & Smith, J. W. (1990). Building an intelligent tutoring system:
Some guidelines from a study of human tutors. Proceedings of the 1990 Annual
Conference of the Human Factors Society, pp. 1407-1411.

Gilman, D. A, & Brantley, T. (1988). The effect of computer assisted instruction on
achievement, problem-solving skills, computer skills, and attitude. Terre Haute, IN:
Indiana State University. (ED 302 232)

Glusko, R. (1989). Design issues for multi-document hypertexts. Proceedings of Hypertext
'89 (pp. 51-60). NY: ACM Press.

Goldman, E., & Barron, L. (1990). Using hypermedia to improve preparation of elementary
teachers. Journal of Teacher Education, 41(3), 21-31.

Gordon, S. , & Gill R. (in press). Knowledge acquisition with question probes and conceptual
graph structures. In T. Gauer, E. Peacock, & A. Graesser (Eds.), Questions and
information systems Hillsdale, NJ: Erlbaum.

Halasz, F. G. (1988). Reflections on notecards: Seven issues for the next generation of
hypermedia systems. Communications of the ACM, 31(7), 836-852.

Halasz, F.G., Moran, T. P. , & Trigg, R.H. (1987). Notecards in a nutshell. Proceedings of the
ACM / SIGCHI conference on Human Factors in Computing Systems (pp. 45.52). New
York: Association for Computing Machinery.

Henry, J. N. (1985). Identifying problems in clinical problem solving. Physical Therapy, 65,
1071-1074.

Hofwolt, C. A., Kumar, D. D., & Altman, J. E. (1991). Hyperscience 456. Paper presented
at the annual meeting of the National Science Teachers Association, Houston, TX,
March 1991.

Irby, D. M. (1986). Clinical teaching and the clinical teacher. JournalofMedicai:Education,
61, 35.45.

Johnson, W. L., & Soloway, E. (1985). PROUST: Knowledge-based program understand-
ing. IEEE Transactions on Software Engineering, 11, 267-275.

Jonassen, D.H. (1986). Hypertext principles for text and coursewaredesign. Educational
Psychologist, 21(4), 269-292.

Jonassen, D.H. (1988). Designing structured hypertext and structuring access to hyper-
text. Educational Technology, 28(11), 13.16.

Jonassen, D. H. (1992). Learning vs. information. Journal of Educational Multimedia and
Hypermedia, 1(1), 305.

Kearsley, G. (1987). Artificial intelligence and instruction. Reading, MA Addison-Wesley.
Kumar, D. D. (1991a). Hypermedia: A tool for STS education? Bulletin of Science,

Technology & Society, 11, 331-332.
Kumar, D. D. (1991b). A note on uHyperequation,' Unpublished manuscript. National

Center for Science Teaching and Learning, Columbus, OH.
Litchfield, B. C., & Dempsey, J. V. (1992). The ND-equipped classroom: Integrating

videodisc technology into the curricula. Journal of Educational Multimedia and
Hypermedia, 1(1), 39.49.

Luerhman, A (1982, February). Microcomputers and children. A paper presented at the
Wingspread Conference on Microcomputers in Education, Wingspread Conference
Center, WI.

Luerhman, A. (1982, September). Don't feel bad about teaching BASIC. Electronic
Learning, pp. 23-24.

Marchionini, G. (1988). Hypermedia and learning: Freedom and chaos. Educational
Technology, 28(11), 8-12.

43

Marsh, E. J., & Kumar, D. D. (1992). Hypermedia: A conceptual framework for science
education and review of recent findings. Journal of Educational Multimedia and
Hypermedia, 1(1), 25.37.

Martinez, M. E. (1991). Figural response in science and technology testing. In G. Kuhn, & S.M.
Malcom (Eds.), Science assessment in the service of reform. Washington, DC: AAAS.

Midro, V., Chioccariello, A, Olimpo, G., Perisco, D., Sarti, L, & Tavella, M. (1988).
Interactive video and artificial intelligence: A convenient marriage. Programmed
Learning and Educational Technology, 25(4), 299-309.

Moore, J. W. (1989). The FIPSE lectures: Tooling up for the 21st century. Journal of
Chemical Education, 66(1), 15.19.

Mulhauser, M. (1992). Hypermedia and navigation as a basis for authoring/learning
environments. Journal of Educational Multimedia and Hypermedia, 1(1), 51-64.

Norman, D. (1988). The psychology of everyday things. New York: Basic Books.
Parunak, H. (1989). Hypermedia topologies and user navigation. Proceedings of Hypertext

'89 (pp. 43-50). NY: ACM Press.
Shavelson, R. J., Baxter, G. P., Pine, J., Yure, J., Goldman, S. R., & Smith, B. (1990).

Performance indicators for large-scale science assessment. Paper presented at the
annual meeting of the American Educational research Association (Session #37.15),
Boston, April 1990.

Sleeman, D., & Brown, J. (Eds.). (1982). Intelligent tutoring systems. New York: Academic
Press.

Smith, K E. (1988). HypertextLinking to the future. Online, 12(2), 32-40.
Smith, P. J., Miller, T. E., Fraser, J., Smith, J. W., Svirbely, J. R., Rudman, S., Strohm, P.

L., & Kennedy, M. (1991). An empirical evaluation of the performance of antibody
identification tasks. Transfusion, 31, 313-317.

Smith, P. J., Galdes, D., Fraser, J., Miller, T., Smith, J. W., Svirbely, J., Blazina, J..
Kennedy, M., Rudmann, S., & Thomas, D. L. (1991). Coping with the complexities of
multiple solution problems: A case study. International Journal of Man-Machine
Studies, 35, 429-453.

Tsai, C. (1988). Hypertext: Technology, applications, and research issues. Journal of
Educational Technology Systems, 17(1), 3-14.

Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational approaches
to the communication of knowledge. Los Altos: Kaufman.

Woolf, B. (1987). Theoretical frontiers in building a machine tutor. In G. Kearsley (Ed.),
Artificial intelligence and instruction. Reading, MA Addison-Wesley.

Woolf, B., & McDonald. (1985). Building a computer tutor: Design issues. AEDS Monitor,
23, 10-18.

Wright, P. (1983). Manual dexterity: A user-oriented approach to creating computer
documentation. CHI'1983 Conference Proceedings, Boston, 11-18.

Acknowledgements: Preparation of this manuscript was supported by the National Center for
Science Teaching and Learning under OERI Grant No. R117Q00062, U.S. Department of
Education. Any opinions, findings, conclusions, or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of the sponsoring agency. Appreciation
is also due to Susan Gross, Stephanie Guerlain, Tom Miller, Salley Ruddmann, Pat Strohm, John
Svirbely, Jack Smith, Shelly Simon, Jean Nippa, Melinda Green and Dan Rosenberg for their work
in developing TMT and GAIT, to Clifford Hofwolt and Jan Altman for their collaboration in
developing Hyperscience, and to John Harwood for his assistance in developing Hyperequation.

44

Chapter 4

Videodisc Technology: Applications for Science Teaching

DERRICK R. LAVOIE

"One in a hundred thinks, one in a thousand sees."

Joseph Albers

An ancient milestone transpired when a primitive humanoid first used a piece of
charcoal from the fire to represent knowledge as crude visualizations on the walls of a cave.
Today, new technologies are defining another milestone in the development of visual
learning.

This chapter establishes a theoretical framework for visual learning and the need for
visual information processing in science based on a cognitive-science/constructivistic
perspective. The discussion focuses on practical "how to" techniques for science teachers
interested in designing, developing, and applying exciting visually-rich learning experi-
ences in their classrooms via videodisc technology. Emphasis is placed on the development
of conceptual understanding, science - process skills, and problem-solving skills. The final
part of the chapter poses several questions for the future of videodisc technology in the
science classroom.

A Constructivisticllnformation- Processing Theoretical Framework

How do my students learn? This is the most fundamental question to be addressed by
science educators concerned with improving their instruction. The relatively new field of
cognitive science attempts to answer this question from an information-processing/

45 %)

constructivistic perspective. Learning is viewed as an active process in which the students,
themselves, must construct "meaningful" understandings (Ausubel, 1963; Shuell, 1990).
In this process, knowledge is selected, discriminated, associated, and elaborated within a
previously existing knowledge structure or cognitive network.

Generally, cognitive scientists believe this cognitive network to be composed of both
declarative and procedural knowledge (Anderson et al, 1990; Deny, 1990; Mayer, 1989).
Declarative knowledge, or product knowledge, is associated with facts and concepts.
Procedural knowledge, or process knowledge, is associated with knowing how to do
something.

Ultimately, it is the nature of the relationships between students' procedural and
declarative knowledge that determines their success relative to an achievement test,
designing an interesting science experiment, or solving a problem. In successful cognitive
networks, procedural knowledge is linked to, acts on, and applies declarative knowledge in
produitive ways. Thus, meaningful learning and, it follows, meaningful teaching must be
a continual process of constructing and reconstructing successful relationships between
relevant declarative and procedural knowledge. Visualization is a powerful tool that can
facilitate this process.

The Importance of Visualization

A plethora of research points to the advantages of visual aids in developing scientific
understanding (Brody, 1984; Dwyer, 1972; Holliday, 1975; Rigney & Lutz, 1976), memory
encoding (Houston, 1991; Vasu and Howe, 1989), and motivation (Kozma, 1991). An
important finding of this research indicates it is not enough to simply show students a
picture or moviethere must be a purposeful interactivity, or relevant information-
processinc demand, between the learner and the visual. The goal of this interactivity is to
draw out important ideas, stimulate creative thought, and promote meaningful conceptual
linkages within the provided context.

Relative to cognitive science, purposeful visual processing must somehow lead to more
elaborated and explicit knowledge relationships than are possible through audio, verbal,
or textual means. Perhaps, due to the inherent high density of information contained in
visuals, there is more opportunity for establishing linkages with pre-existing knowledge.
Such linkages may be iconic to verbal, iconic to iconic, etc. The high information density
could also account for research findings indicating that while visual processing takes more
time than textual (Shapiro, 1985) it is a more efficient way to learn (Paivio, 1971).

Einstein noted that at the highest level of his thinking was pictorial symbols. Possibly,
the architecture of the brain can store iconic information more efficiently than verbal
information, as well as facilitate the linking of such information with other knowledge. This
might, in part, explain the positive learning results obtained for concept mapping (Fisher,
1990; Mason, 1992; Novak & Musonda, 1991;). Concept maps can be considered iconic
representations of cognitive schemata. It also seems likely that visual information is easier
to "chunk" and manipulate in short-term memory. Other findings report a "parallel
processing" advantage of visual over other learning modes (Reed, 1992).

In sum, the research suggests that the teaching of science should be done concurrently
with visual aids during all phases of instruction and at all levels of cognitive development.
Videodisc technology, combined with appropriate teaching/learning strategies, can be used
to achieve high levels of visual interactivity.

46

Videodisc Technology

A typical videodisc is composed of a variety of simulated/animated processes, still
pictures, motion pictures, and graphs that can be accessed almost immediately from
anywhere on the disk via a computer or remote control Animated or real-life sequences can
be slowed down, sped up, frozen, manipulated, and experimented with in ways uniquely
different from videotape or printed media. Videodiscs offer microworlds within which
students can explore and discover concepts in "real world" contextscontexts that would
otherwisA be unavailable to science students due to concern for safety, time, expense, or
accessibility.

Most commercial 12 inch laser videodiscs in the sciences cost from $100 to $600 and
contain 54,000 numbered picture frames per side. While these visual databases may
involve 54,000 discrete slides, only 30 minutes of motion picture is possible on a one-sided
videodisc. Distributors of videodiscs for science include Videodiscovery (206-285-5400) and
Optical Data Corporation (1-800-524-2481).

Learning and Teaching via Videodisc Technology

Videodisc presentation format is classified based on the degree of remote control
(Weller, 1988). At the most basic level of presentation, the videodisc is basically played and
stopped, and played again, much like videotape. This form of instruction is very linear and
visually deductive, leaving little room for student directed learning. At a higher level a
teacher or student using an access controller can immediately search and explore
information anywhere on the videodisc. They can illustrate particular concepts, provide
interesting presentations, and engage in visually-rich problem-solving experiences. This
allows for any videodisc segment or frame to be accessed almost immediately. The highest
level of user control commonly employs a videodisc player connected to a microcomputer
that is programmed to interact with the user, based on his/her actions, and adapt
instruction accordingly.

Teachers or computers can increase visual interactivity by asking appropriate diver-
gent and convergent questions, giving opportune feedback, posing visually-oriented
problems, and using a visually-rich medium such as videodisc technology. It will be useful
for teachers to consider visual interactivity based on a hierarchy of increasing information-
processing demand:

Level 1- Motivation, interest, appeal
Level 2- Explanation or exploration of a concept, relationship, or procedure.
Level 3- Generation of questions, hypotheses, predictions or inferences.
Level 4- Experimentation, data manipulation and collection
Level 5- Problem solving, evaluation, metacognition

As with Bloom's taxonomy, teachers will want to engage students at a variety of levels
for optimal success. As with other inclusive hierarchies of cognition, the highest level of
interactivity involves problem solving. In this case, solving the problem requires interac-
tion with a visual that would entail processing from Level 1 to Level 4 above.

Teachers should also find it useful to consider learning, via videodisc, on a continuum
from visual deduction to visual induction. Visual deduction requires students to identify

47

a predetermined concept while viewing still or motion videodisc segments, also
predetermined by the teacher. Visual induction, the more student-structured strategy,
involves students exploring and piecing together images from the videodisc to repre-
sent their own understanding of a particular science concept which may or may not
have been selected by the teacher. This is similar to the "imposed picture strategy" of
Alesandrini and Rigney (1981) and representative of "constructivistic" learning
strategies (Basili, 1989; Wheatly, 1991; Glynn, Yeany, & Britton, 1991). The student-
structured nature of visual induction tends to access higher levels of the visual
information-processing hierarchy. Thus, it is seems likely that visually inductive
strategies are more effective for revealing students' prior knowledge (pre-scientific
conceptions) and generating conceptual understanding than are visually deductive
strategies.

Another distinction between visual deduction and induction concerns linearity.
While the learning pathway of visual deduction tends to be more "linear," learning via
visual induction can be much more "non-linear." The non- linear learning experience
is fundamentally different from the traditionally linear mode in that the teacher or the
computer does not know what the student will do (Nix, 1990). Relative to the need for
non-linearity, Spiro and Jehng (1990) comment:

The advent of random access computer technologies makes practicable new forms of
nonlinear and multidimensional learning and instruction that are better suited to
conveying complex content. (p. 163)

Non-linear instruction seems to be a key for going beyond what is explicitly taught
by requiring learners to independently apply their knowledge in a pattern that is not
preset by text or teacher. The flexibility of the videodisc learning environment can
provide a variety of visual arenas within which students can choose a infinite number
of learning pathways.

Videodisc instruction, without computer control, can become an effective vehicle
for delivering "anchored instruction" (Bransford et al., 1990). Anchored instruction is
a kind of visually deductive strategy that provides the student with a motivating focus
requiring the identification and application of visual information that is relevant to
solving a posed problem. An effective anchor forces the student to notice more relevant
features or patterns of a problem, to develop more complex search paths, to identify
relationships between more information, and to become metacognitively conscious of
changes in his/her own cognitive processing and understanding. Information-process-
ing models consider this to result in conditionalized knowledgeknowledge stored in
the form of production systems linked to goal-oriented problem-solving processing
(Anderson, 1987; Holland et al., 1985; Simon, 1980). Productions systems consist of
condition-action (if-then) pairs that link declarative (factual knowledge) and proce-
dural knowledge (process knowledge). When students conditionalize their knowledge
it is viewed as a means to an end and not an end in itself.

In the case of visual interactivity, procedural knowledge acts on and establishes
links with visual declarative knowledge which may then be further linked to verbal or
audio declarative knowledge. Some research indicates visual-based learning strate-
gies, while improving visual processing, may not necessarily improve verbal process-
ing (Alesandrini & Rigney, 1981). Blystone and Dettling (1990) list several good

48
6 4

suggestions for critiquing and using visuals with science textbooks which have direct
implications for visual-to-verbal and verbal-to-visual processing.

Lastly, science teachers using videodiscs for instruction should find it useful to
consider the literature concerned with improving students' visual-spatial skills
(Hassard, 1982; Lord, 1987; Lowery & Knirk,1982;), techniques for creative visualiza-
tion (Finke, 1990; Zielinski & Sarachine, 1990), and visual-learning modes (Vasu and
Howe, 1989).

The next section of this chapter describes several inductive and deductive strate-
gies science teachers can use with videodisc anchors to achieve high visual
interactivity with and without computer control. Economical techniques are also
described for producing your own videodiscs.

Visually Deductive Strategies

Research efforts by the Cognition and Technology group at Vanderbilt University
have resulted in several videodisc anchors for science instruction which take the form
of problem-solving vignettes (Bransford et al., 1990; Sherwood, 1991). For example,
using a videodisc of "Raiders of the the Lost Ark," students are asked to consider
problems Indiana Jones might encounter on a trip through the South American jungle.
Another videodisc, which was actually produced by the Vanderbilt group, follows a
family on a one-week trip down a river. Students identify and solve a series of sub-
problems relative to determining the required food, water, gas, and destination
distance. It's an integrated approach requiring knowledge of math and science. At least
fifteen different bits of embedded knowledge must be identified on the videodisc.

Recently, I developed several problem-solving v ignettes on videotape with the help
of high -school science students. The following production sequence, involving students
working cooperatively on each phase of the ignette production, considerably adds to
their learning, motivation, and excitement about science.

First, students identify an interesting problem situation in science. Second, they
write a script to include an interesting story line involving a small group of "acting"
investigators that encounter the problem situation. One high-school biology class I
worked with developed a vignette called "Bad Water," which involves a group of high-
school students taking action to determine the effect of a toxic leak in their local water
source. At the end, a problem is posed challenging the viewers to decide how they would
deal with the problem. Information relevant to solving sub-problems associated with
stopping the leak, determining the extent of the contamination, and dealing with the
contamination is embedded in the videotape. Science concepts center around diffusion,
waste management, ground water contamination, and proper sampling methods.

Third, a cast of actors and actresses, the stage crew, and the video production crew
(all made up from your students) go on location (e.g., a stock room or school creek) to
record the drama of each scene on videotape. Students always find this part most
entertaining. The stage crew must be sure all materials and equipment are set up for
each scene. The video production crew maintains proper lighting, background, and
audio/levels while directing the videotaping. Of course, the cast must have rehearsed
their parts. The videotaped scenes usually must be edited to a final videotaped version
which can be used for anchored instruction as described above. The tape can offer more
flexibility and accessibility by being transferred to a videodisc.

49 ()

Visually Inductive Strategies

A project I am currently working on involves producing a videodisc from videotaped
episodes of the elementary classrooms to be used in a new course at Montana State
University. The goal of the course, in the spirit of "reflectionism," constructivism, and
visual induction, will be to give Freshmen entering the teacher education program an
early experience formulating initial ideas and perspectives about teaching (i.e.,
developing a prior experiential knowledge base). The students will use the videodisc
anchor to create computer-controlled Hypercard presentations illustrating key con-
cepts which they identify from the videodisc. Hypercard can become an effective vehicle
for these kinds of visually inductive learning experiences. Using its user-friendly iconic
environment, it is relatively easy for students to select and sequence videodisc
segments, add text or graphics, and piece together interesting presentations that
reveal their understandings.

Videodisc Production Strategies

While videodiscs may be purchased commercially, the innovative science teacher
working from a modest budget, can actually create his/her own videodisc for under
$500. You will need two 1/2" VCRs, a high-quality 1/2" VHS camcorder (super VHS
is best), and a 3/4" editing machine. After shooting your videotape footage, it is likely
you will need to edit the appropriate vignette sequence to another tape while removing
any excess or confusing footage. Video and audio RCA connecting cables should be
plugged into the "out" ports on the "play" VCR and into the "in" ports on the the
"record" VCR. The edited vignette is made by recording appropriate video sequences
on the "record" VCR from the original videotape that is played on the "play" VCR.
Although you will lose one "generation" of quality, the final video vignette is more than
adequate for use in the classroom. Next you must dub the 1/2" VHS tape up to a 3/4"
tape while adding color bars and time codes. In the event you do not have direct access
to a 3/4" editing machine, most video production companies will do it for about $150.
The final 3/4" 30 minute videotape is sent to a production company such as 3-M Optical
Recording or Optimus, Inc. to be formatted to a videodisc for about $400. Most videodisc
formatting companies will send specifications for the final videotape, prices, and other
important information.

Interactive Videodisc Lessons for Higher Level Visual Interactivity

A videodisc linked to a computer is commonly referred to as an interactive videodisc
(IV). In general, the more the system is adaptive, reactive, and flexible the greater its
interactivity. In this case, interactivity can be defined as the exchange of information
between the user and the computer.

IV lessons can effectively compensate for lack of teachers and materials, free the
teacher for more individualized instruction, and free the students for more hands-on
activities. Research indicates N can substantially improve students' conceptual
understanding, problem solving, and psychomotor skills (Smith & Lehman, 1988).
Farragher (1991) comments on the possibilities for IV:

50

6'4

The applications of interactive video to science teaching are unlimited... Individualized
tutoring is another obvious application of interactive video. A whole collection of
tutorials across all topics in the sciences is envisioned. (p. 13)

The design of this c 3mi-intelligent tutoring lessons should be approached on primary,
secondary, and tertiary levels. Primary-level design identifies the basic strategy for
effective science teaching science, per se. Secondary-level design is concerned with general
principles of instructional design. And, tertiary-level design comprises techniques and
strategies that most productively integrate primary and secondary-level design in a
computer-controlled environment to create exciting and adaptable interactive lessons.

Primary Level Design

Many national reports have indicated students lack the basic skills to think, reason,and
formulate science concepts (Bybee et al., 1989; Mullis & Jenkins, 19 ; National Commis-
sion for Excellence in Education, 1983; Weiss, 1989). Developing W lessons to teach at high
levels ofvisual interactivity can help to alleviate this situation. It has been well documented
that instruction based on the three-phase Karplus learning cycle (involving phases of
exploration, term introduction, and concept application) improves conceptual understand-
ing and process-skill achievement compared to traditional instructional methods
(Abraham & Renner, 1986; Lawson, Abraham, & Renner, 1989). Concluding from the
research associated with the learning cycle, Lawson, Abraham, & Renner (1989) comment,
"It is not only a good way to teach science, it is the way to teach science" (p. 77). The learning
cycle is thus a good choice for modeling N lessons.

The Phases of the Learning Cycle

Phase one of the learning cycle, or exploration, encourages students to interact with
new concrete situations (e.g., variables) with minimal guidance or demand from the
teacher. The situation should raise questions or mental complexities that the students can
not resolve which subsequently motivates them toward the discovery of relationships or
patterns in data (i.e, the concept). According to Piaget, the mental restructuring that results
from progressing from a state of disequilibrium to that of equilibrium is considered to be
"true" learning.

Phase two, or term introduction, involves introducing the terms to the students via
student discussion, text reading, teacher lecture, etc. This should allow for comparison and
clarification of initial experiences with the terms. The patterns and relationships students
identified, or at least were exposed to during exploration, are further revealed. Ideally, the
teacher should not explicitly state the concept or relationship to be learned. Rather, the
students should be led to the concept by careful analysis of the data or logical scientific
thinking. A concept, as it should be taught using the learning cycle, can be defined as a
mental structure or relationship and its associated term (i.e., verbal label).

In phase three, concept application, students apply their newly acquired concept to
additional situations and problem-solving contexts. In essence, by increasing the range of
applicability of the concept, the associated cognitive structure is elaborated and strength-
ened. This reduces the accumulation of unused or "inert knowledge" (Whitehead, 1929).
According to current cognitive science views, this process not only increases understanding
of the concept, but makes it more accessible in problem-solving situations (Bransford et al.,

51 6j

1986). Not surprisingly, one of the characteristics of a good problem solver is the ability to
identify and apply relevant information.

Recent research by Lavoie (1991) and Lavoie and Good (1988) has improved the
effectiveness of the already good learning cycle strategy by adding explicit hypothetico-
predictive and discussion phases (see Figure 1). Hypothetico-predictive processing involves
making a prediction and supporting it with a reason (i.e., a hypothetical justification).
Compared to the traditional learning cycle instruction, this kind of modified learning-cycle
instruction results in greater student motivation to carry out scientific investigations, more
positive attitudes toward science, more positive attitudes toward their peers, and greater
inter-peer interaction during the subsequent phases of the learning cycle. It also leads to
significant increases in conceptual understanding, logical thinking abilities, and process
skill achievement.

(CONCEPT
APPLICATION)

(EXPLORATION)

pothetico-Fir edictive)
Processing_,--

- (TERMOw

INTRODUCTION

Figure 1. Flexible learning cycle with "hypothetico-predictive" power

Connecting Interactive Videodisc and the Four-phase Learning Cycle

Considering the many advantages of a four-phase learning cycleincluding a
hypothetico-predictive, exploration, term introduction, and concept application
sequenceit is an excellent choice for primary-level design of N lessons.

For example, the learning cycle might involve an initial prediction phase in which the
computer is programmed to display videodisc pictures of scientific events, experiments, or
sequences of events. Students would then be prompted to make predictions about the
outcomes and to justify their predictions with explanatory hypotheses.

During the exploration phase, IV offers an excellent opportunity stimulate
disequilibrium in students as they make detailed and controlled observations of videodisc
events. Disequlibrium is considered to be a central component for concept learning by
Piaget as well as contt, m Ivry cognitive scientists. This phase may involve students visually
manipulating severel N, a riables , in both qualitative and quantitative ways, to observe the
real-life effects of eteir EAtiOr13 i;assard (1982) offers some simple suggestions to science

6

52

lab

teachers for "opening the mind's eye to science" with visualization experiences that are
applicable to IV learning.

In term introduction, students may receive both audio and visual definitions of the
terms, perhaps while observing a videodisc film or slide sequence illustrating the concepts.
During the concept application phase, students could be challenged to apply their
conceptual understanding in various videodisc contexts. This may involve finding addi-
tional videodisc examples illustrating the concept or answering higher-level questions
posed about selected videodisc segments. For example, students might find selected
videodisc excerpts that relate the concept to technology and/or societal issues. Also,
students could work on a problems requiring them to change parameters and observe the
videodisc effects.

Secondary Level Design

In addition to employing the prediction-based learning cycle for the primary-level
design, several important instructional design principles based on cognitive learning
theory (Gagne et al., 1981; Hamelin & Peck, 1988; Piaget, 1975; Rosenshine & Stevens,
1986), should be considered at the secondary level. These principles imply that computer-
assisted instruction should be designee to:

Gain the attention of the learner.
Inform the learner of the expectations for learning.
Stimulate students' recall of prior knowledge.
Guide the students' learning.
Present clear and detailed explanations.
Present lessons at or slightly above students' level of cognitive development.
Provide the student with systematic feedback that is informative.
Frequently ask questions at varying levels of Bloom's taxonomy.
Provide ample opportunity for students to practice.
Assess and monitor student performance.
Maintain congruence between objectives, instruction, and assessment.
Address and evaluate the cognitive, affective, and psychomotor domains.
Individualize instruction.
Allow an optimal amount of learner control.
Assess lessons based on student objectives, attitudes, and programming effectiveness.
Guarantee reasonable success to the student.
Stimulate a certain degree of disequilibrium.
Use additional media as appropriate.

Tertiary Level Design

Tertiary-level design is concerned with the incorporation of primary and secondary-
level design within the context of IV. The characteristics of IV instruction that would best
facilitate this process include the capacity to:

Deal with both slow and fast learners, with endless patience.
Provide extensive one-on-one instruction and rem6di.ation.
Provide immediate feedback based on differing student response.

53 6i

Branch at various points, based on the students' responses to other visuals, questions,
problems, etc. to deliver appropriate individualized instruction and/or feedback.
Display text and videodisc information simultaneously
Present and evaluate multiple choice questions as well as open-ended (essay)
questions.
Allow the student to control the pace of the lesson.
Maintain a bugfree environment that is easy to manipulate and interpret.

Several good sources are available with additional strategies for tertiarylevel design
(Hazen, 1985; Kearsley & Frost, 1985; Merrill, 1988; Weller, 1988).

Hardware and Software for IV

The degree to which the above capabilities for primary, secondary, and tertiarylevel
design can be incorporated in a IV science lesson will depend your available hardware and
software. A laser videodisc, a laser videodisc player, video monitor, and computer comprise
the basic hardware (see Figure 2).

RS232
Connector

Microcomputer

Authoring Systeni

:..

Monitor
s_

***,../ , Lasercric player
Poneer 4200
ISSEES

Figure 2. The components of computer-assisted IV instruction

The laser videodisc player connects to any suitable TV monitor in a similar way as the
monitor would connect to a standard VCR playerrecorder. While just about any computer
can be linked to a videodisc player, the connection is unique. You will need to check with
your local computer representative to determine the appmpriate connectors and ports. A
good quality laser videodisc player costs around $1000 (e.g., Pioneer LDV 4200).

The decision of which computer to use should be directly related to your personal
preference and the degree of "interactive power" you wish to ultimately attain. This, in
turn, is directly related to the capabilities of available software and hardware. The software

54

6 3

you choose for developing your lessons depends on your programming experience. But, if
you are like most teachers, with little or noprogramming experience, you would do best to
choose one of the advanced authoring systems currently available for a variety of different
microcomputers (see Tyre, 1989; Merrill, 1987; Journal of Computer-Based Instruction,
Summer, 1984). While there are several authoring packages for the Apple He and IIGS, to
create the IV lessons discussed earlier will require at least the powerof a Macintosh or IBM
Model 30/286. Hypercard for the Macintosh, and Linkway for the IBM compatibles offer
easy to use iconic authoring environments.

Authoring systems contain a series of user-friendly commands, prompts, menus, and
utilities that allow the user to sequence questions, videodisc content, instructional
feedback, and related content in the format of a science lesson. But, beware when choosing

an authoring system: some have such a rigidlayout that the lesson design is pre-structured.
This prevents teachers from using their own designs and severely limits the possibilities
of non-linear instruction.

Visualization beyond IV can be achieved on the computer screen through advanced
animation techniques as well as advanced graphing and drawing programs (Kashef, 1991).

A different type of visualization experimentation is possible using a camcorder connected
to a computer to analyze symmetry, area, and mass relationships (Speitel, 1991).

Interactive Videodisc Lesson DevelopmentAn Example

My research and development efforts at Montana State University are concerned
with the development and evaluation of IV biology lessons based on the four-phase
learning cycle described previously. The development process has evolved into six
sequential steps: concept selection, content selection, lesson planning, authoring,
evaluation, and modification. This same developmental process can be essentially
followed by the classroom teacher wishing to develop IV science lessons.

Step 1- Concept Selection

Most of the major concepts in biology are suitable for learning cycle instruction.
I lowever, because of the cognitive demands and time necessary for conceptual understand-
ing to take place, only one or two concepts should be taught per lesson. It will help to define
concepts as patterns or relationships between facts, and tocecognize that concepts fall on

a c itinuum from simple to complex based on the quality and quantity of relationships or
patterns between the facts. For example, the concept of diffusion is relatively simple
compared to the concept of evolution. Of course, the concept(s) you choose for a lesson should
depend on the students' prior knowledge, both factual and conceptual, as well as their level

of cognitive development.
A recently completed IV biology lesson, "With All My Heart," deals with the concept

of heart rate and its relationship to factors such as stress, age, smoking, and obesity.

Step 2- Content Selection

Once the concept has been chosen, related videodisc content is identified from a science
videodisc. See Woerner, Rivers, and Vockell (1991) for a complete listing of science
videodiscs, For simplicity, only the content on one side of a videodisc is used for any given

55

lesson since most videodisc players only read one side at a time. It is often disruptive and
impractical to switch videodiscs back and forth during a lesson.

This step is facilitated by the detailed documentation provided with commercial
videodiscs. The documentation describes, frame by frame, the content of the videodisc,
including any audio sequences. After choosing the frame numbers, it is a simple task to
splice them into the lesson at any given point or have them accessible by a specific command.
"With All My Heart" involves a series of videodisc segments displaying the mammalian
heart beating as a result of different physiological and environmental effects.

Ideally, content should center around activities with lengthy time periods, costly
apparatus, and, in general, those experiences not available or possible in a traditional
classroom.

Step 3- Lesson Planning

This task basically involves developing a detailed four-phase learning cycle lesson
designed to teach the one or two science concepts. An emphasis is placed on incorporating
science process skills such as observation, hypothesizing, predicting, experimenting,
evaluating data, and drawing conclusions.

Based on the anticipated student responses to questions or problems posed at varying
levels of difficulty, appropriate feedback is developed. This might involve remediation
statements, review of earlier learning experiences, posing extra problems, as well as
pointing out errors and misconceptions in students' reasoning.

A flow chart for the "With All My Heart" lesson plan is shown in Figure 3. During the
"exploration" phase, students describe and record detailed observations of a living
mammalian heart. Based on their observations, feedback is given that either re-directs
them back to observing for more specific effects, or allows them to continue with positive
reinforcement.

Exploration:
Observation of
beating heart

erm Introduction:
Heart Rate
Heart Flow
Heart Sounds

Concept Application:

CHypothetico:'` Observation of
predictive actual effects

`processing /

Qua
Review ,)

Hypotheses/Predictions:
Evaluation

\- Modification

STS Problem) H Scientific Explanations

#7ssignment

Figure 3. Flow path for IV lesson

I 56
k

In "term introduction," heart rate, blood flow, and heart sounds are defined using "real-
live" videodisc footage in combination with computer text and graphics. Then, a short
multiple choice quiz is taken with appropriate feedback provided for each possible response
from the student. Following the quiz, students have the option to review the terms as many
times as needed.

The "concept application" phase involves the students in making predictions,justifying
predictions with logical reasons (generating hypotheses), observing actual effectsofvarious
factors on heart rate, and then evaluating and modifying the reasoning given for their
initial predictions. Following the prediction evaluations, actual scientific explanations are
made available to the student for further comparison and reflection. The emphasis on
hypothetico-predictive reasoning facilitates students' conceptual changes. The final part of
concept application involves a problem dealing with a society-technology-science (STS)
issue concerning the effects of smoking and obesity on heart rate.

Step 4- Authoring

The prediction-based learning cycle lesson plans are authored for IV using
" Authorware Professional" (Authorware) on a Macintosh microcomputer. In addition to
possessing the capabilities for tertiary-level design, discussed earlier, this authoring
system can:

Store all students' responses, branch paths taken through the lesson, time to respond
for each question, total time spent on the lesson and specific parts of the lesson,
percentage score of total correct answers, etc.
Use advanced data-driven animation (i.. e, scale and coordinate movemen tof m u kip le

objects) to create unique and interesting simulations of scientific phenomena.
Use digitized sound (i.e., can speed it up and slow it down), recorded speech and
recorded music.
Be used in IBM PCs, once the lesson or course is developed
Jump out and back from any application (e.g., Microsoft Word, EXCEL, etc.).
Import graphics from any application (e.g., Superpaint, MacDraw, etc.).
Quickly design and format lessons using iconic flow-charting.
Resume at the point in the lesson where student last finished.

The iconic environment of "Authorware Professional" makes it easy to visualize
different levels of lesson design and the sequential flow of lesson development. I am
currently investigating the potential of Hypercard for creating a user-friendly authoring
template with which science teachers could quickly and efficiently createIV science lessons

based on the learning cycle.

Step 5- Evaluation

The lesson is now field-tested with students having varying levels of science back-
ground and cognitive development. Three techniques are used to assess lesson effectiveness.

First, a selected sample of students are videotaped as they work through the lessons
while thinking out loud. This technique, while involving a time consuming analysis, can
yield valuable information on students' thinking processes associated with their concep-
tions (and misconceptions), predictions, progress through the learning cycle, and interac-

57

tion with IV. Readers interested in this technique should refer to Ericsson and Simon (1984)
and Larkin and Rainard (1984).

Second, the computer record of student performance is analyzed for bugs, areas of
confusion, etc. And third, a student questionnaire is administered with questions address-
ing the positives and negatives as well as suggested modifications of the lesson experience.

Step 6- Modification

Based on deficiencies identified in step 5, the computerassisted IV lesson is modified
to increase interactivity. This commonly entails considerable elaborations and additions
relative to questions, questioning sequences, feedback content, and feedback location.
Other modifications include additional videodisc segments, more user control, and an
increased focus on personal relevancy. In general, the greater the interactivity the more
intelligent the system. Recent research efforts are directed at merging IV systems with
artificial intelligence. Midoro et al. (1988) remark:

The components of the student station are changing as technology rapidly advances.
As a result the potentialities of IV systems are continuously improving. Furthermore,
in the near future it will also be possible to interface IV systems with Al workstations
for large scale applications. Hence, the importance of an effective integration of the two
technologies grows continuously. (p. 300)

It can not be denied that the above process of IV lesson development is time consuming,
and it is certainly recognized the typical science teacher does not have a lot of extra time.
The following suggestions to teachers will help expedite the above the six step process:

1. Purchase several good learning cycle activity books to facilitate lesson development
(e.g., Carin & Sund, 1980; Lawson, 1989; Renner et al., 1985).

2. Read some interesting articles concerned with the philosophy of learning cycle
teaching (Barman, 1989; Beisenherz, 1991; Lawson, 1988).

3. Modify IV lessons based on personal observations and student feedback, and
questionnaire data collected during regular classroom use.

4. Train students to use an authoring system (e.g., Hypercard) so that they can assist
you in authoring and modifying IV lessons. Beekman (1992) provides quick and easy
to learn Hypercard instruction.

Although the thinkaloud data is very valuable for lesson modification, my research has
shown that questionnaire data from an entire class reveals considerable information.
Further, involving students in lesson development not only improves their learning and
conceptualizing, but is a powerful motivator.

Creating an IV Learning Environment in the Science Classroom

The actual logistics of IV instruction in the classroom has a wide variety of
possibilities. Since most teachers will only have access to one or two IV stations, each
station should be as adaptable as possible to different instruction modes. An ideal IV

P" ; 58

learning station might involve a computer, videodisc player, monitor, a series of science
videodiscs, modem, and laboratory measurement devices interfaced to the computer.
This would all be housed efficiently, and safely, in a rollable table with the computer,
videodisc player, and monitor on a raised platform above table level where hands-on
lab activities are conducted. Interfacing scientific apparatus with the computer offers
several advantages such as saving student time, improving effectiveness, simplifying
data analysis, making experimental results more m aaningful, and enhancing problem-
solving skills (Leonard, 1988; Snyder, 1990).

Students might engage the IV learning station for individual work using science
courseware or for whole-class observation and discussion. Students that are ahead of
the others could be given interesting IV lessons to supplement and extend their
learning while those behind could be engaged in remedial tutorials. Students, working
in small groups, could use the computer for collecting, displaying, and analyzing data
obtained from observations of the videodisc and/or hands-on experiences with the
interfaced instruments. Immediate visual display of graphical data allows students to
more easily perceive a conceptual relationship and not just a curve or line. Students
could also design and conduct experiments, answer high-level questions posed, and
reach collaborative conclusions. Figure 4 shows a possible cycle of scientific investiga-
tion in which technology becomes a very efficient bridge between science and math-
ematics while facilitating the scientific process. Both the teachers and the students will
have the luxury of spending a much greater proportion of their time in science class on
the "thinking" part of science investigation and learning.

(OBSERVE) HYPOTHESIZE

0LESTION

DESIGN EXPERIMENT TO
TEST PP EDICT:CN

4--

E

(COLLECT DATA)

___,
i MODEL DATA

C
\--./H M

N A (a.
INTERPRET DATA

I H (ANALYZE DATA \,0 T ---...
0 ... /-- -----
C,

,..,CONCLUSICNS)
DRAW

Figure 4. Cycle of scientific investigation integrating science, mathematics, and technology

59 Pi. 3

BEST COPY AVAILABLE

Using the modem, teachers or students could use the IV learning station to tap into the
super hi-ways of information exchange. These networks offer a variety of resources (e.g.,
articles, lesson plans, graphics, software, etc.) and allow the user to engage in productive
collaborations with peers nation wide. While your state will have local networks that can
be entered, usually for free, one of the more powerful "world" communication network is
Internet. You can also enter Internet for the cost of local phone call assuming you are near
a university and can get an account number and password.

It should be emphasized that the purpose of IV is not to replace traditional instructional
modes, but to increase "teaching/learning power' by extending the capacity of what
students and teachers can do in a science learning situation. During an N learning session
the teacher should be actively moving around the room, monitoring, answering questions,
suggesting possibilities, assessing student performance, etc. Hofineister et al. (1989)
describes how a teacher might orchestrate a IV experience:

In a typical instructional interaction, the teacher would signal the videodisc player to
initiate a demonstration. The player would present the demonstration, pose problem
to check on student understanding, and stop automatically, with the problem summa-
rized on the screen. When the teacher felt the students were ready for feedback, a
button press on the remote control would present the answer and often the reason for
the answer. A wide range of branching options allowed the teacher to access additional
examples or bypass material, based on assessments of student mastery. The use of
individual student workbooks facilitated student interaction and the coordination of
independent practice. In the last part of each lesson the majority of students could use
workbooks for independent practice, while the teacher conducted guided practice with
those in need of extra help (p. 667).

It would seem that there are many ways that IV might be used in the science classroom.
The paucity of research and application relative to IV science teaching offers a simmering
primordial soup anticipating the evolution of many innovative ideas and techniques which
you, the science teacher, can discover.

The Future of Videodisc Technology for Science Instruction

While IV holds much promise in science education, much research is needed to examine
its possibilities, successes, and failures (Reif, 1985). Clearly, future efforts for improving
videodisc instruction in science should examine the extent and structure of learner
interactions within the visual environment of the videodisc from a cognitive science -
information- processing perspective.

At what levels can students be involved in the design process? How are students best
trained to use an authoring system so that they can assist the teacher in developing and
modifying interactive videodisc lessons?

How do students process information when they look at a simulation, still frame,
computer graphic display? Is there a preference for motion over still picture?

60

0

Why do students choose certain learning pathways through the IV lesson, but neglect
other pathways? What successful cognitive behaviors should be encouraged?

What teaching strategies are more effective for learning with IV instruction? How do
students learn best from a visual display? Why are some computer displays more
motivating than others? What is nature of the interaction between the computer
display and the IV monitor?

What is the nature of the interaction and effects on learning for combining linguistic
and visual contexts? What verbal cues should students be given and when?

What is the impact on learning of linear versus non-linear presentation formats? What,
are the cognitive consequences of switching from one mode to another? Does a
particular mode favor concrete or formal students, field-dependent or field-indepen-
dent students, slow or fast learners?

What are strategies for using IV to teach students psychomotor skills, such as those
used in a science laboratory experiment?

Conclusion

The intent of this chapter was to introduce exciting teaching/learning techniques for
enhancing students' thinking skills and conceptual understandings through the visually-
rich medium of v ideodisc technology. Discussion addressed how science teachers can apply
IV in their classrooms, with and without computer control, along avisually deductive to
inductive continuum.

It is my hope that teachers will utilize this powerful tool to create engaging science
experiences and, in general, to explore largely unexplored terrain. Teachers need to realize
that they are the creators of their own destiny and, to a large degree, their students' destiny.
Certainly, the in-the-trenches teachers will ultimately determine the success or failure of
technology within our educational system. I believe, with the help of technology, science
teachers can empower significant improvements in how students learn. Now more than
ever, the time is right for venturing a technological leap toward a new era of teaching and
learning.

References

Abraham, M. R., & Renner, J. W. (1986). The sequence of learning cycleactivities in high
school chemistry. Journal of Research in Science Teaching, 23, 121-144.

Alesandrini, K. L., & Rigney, J. W. (1981). Pictorial presentation and review strategies
in science learning. Journal of Research in Science Teaching, 18(5), 465-474.

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem solu-
tions. Psychological Review, 94, 192-210.

Anderson, J. R., Boyle, F., Corbett, A. T., & Lewis, M. (1990). Cognitive modeling and
intelligent tutoring. Artificial Intelligence, 42, 7-49.

61 fJ

Ausubel, D. P. (1963). The psychology of meaningful verbal learning. New York: Grune and
Stratton..

Barman, C. R. (1989, February). The learning cycle: Making it work. Science Scope, pp.28-
31

Basili, P. (1989). Science teaching: A matter of changing minds. Journal of College Science
Teaching, 27, 324-326.

Beekman, G. (1992). HyperCard 2 in a hurry. Belmont, CA: Wadsworth Publishing
Company.

Beisenherz, P. C. (1991, January). Explore, invent, and apply. Science and Children, pp.
30-32.

Blystone, R. V., & Dealing, B. C. (1990). Visual literacy in science textbooks. In M. B. Rowe
(Ed.), What research says to the science teacher: The process of knowing (vol. 6).
Washington, DC: National Science Teachers Association.

Blystone, R. V., & Dealing, B. C. (1990). Visual literacy in science textbooks. In M. B. Rowe
(Ed.), What research says to the science teacher: The process of knowing (vol. 6).
Washington, DC: National Science Teachers Association.

Bransford, J. D. , Sherwood, R. D., Hasselbring, T. S., Kinser, C. K., & Williams, S. M. (1990).
Anchored instruction: Why we need it and how technology can help. In D. Nix & R. Spiro
(Eds.), Cognition, education, and multimedia. Exploring ideas in high technology.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Bransford, J. D., Sherwood, R. D., Vye, N. J., & Rieser, J. (1986). Teaching thinking and
problem solving: Suggestions from research. American Psychologist, 41(10), 1078-
1089.

Brody, P. J. (1984). Research on pictures in instructional texts. Educational Communica-
tion and Technology Journal, 29, 93-100.

Bybee, R. W., Buchwald, C. E., Crissman, S., Heil, D. R.. Kuerbis, P. J., Matsumoto, C., &
McInerney, J. D. (1989). Science and technology education for the elementary years:
Frameworks for curriculum and instruction. Washington, DC: National Center for
Improving Science Education.

Carin, A., & Sund, R. (1980). Discovery activities for elementary science. Columbus, OH:
Charles R. Merrill.

Derry, S. J. (1990). Learning strategies for acquiring useful knowledge. In B. F. Jones &
L. Idol (Eds.), Dimensions of thinking and cognitive instruction. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Duit, R. (1991). On the role of analogies and metaphors in learning science. Science
Education, 75(6), 649-672.

Dwyer, F. M. (1972). The effect of overt responses in improving visually programmed
science instruction. Journal of Research in Science Teaching, 9, 47-55.

Ericsson, K., & Simon, H. A (1984). Protocol analysis: Verbal reports as data. Cambridge,
MA: MIT Press.

Farragher, P. (1991, April). What the research says about interactive video (IV) and its
implications for science education. Paper presented at the annual meeting of the
National Association for Research in Science Teaching, Lake Geneva, WI.

Finke, R. (1990). Creative imagery: Discoveries and inventions in visualization. I lillsdale,
NJ: Lawrence Erlbaum Associates.

Fisher, K. M. (1990). Semantic networking: The new kid on the block. Journal of Research
in Science Teaching, 27(10), 1001-1018.

I 0
62

Gagne, R. M., Wager, W., & Rojas, A. (1981). Planning and authoring computer-assisted
instruction lessons. Educational Technology, 21(9), 17.26.

Glynn, S. M., Yeany, R. H., & Britton, B. K. (1991). A constructivistic view of learning
science. In S. M. Glynn, R. H. Yeany, & B. K. Britton (Eds.), The psychokgy of learning
science. Hillsdale, NJ: Lawrence Erlbaum.

Hannafin, M. J., & Peck, K. L. (1988). The design, development, and evaluation of
instructional software. New York: Macmillan.

I lassard, J. (1982). Opening the mind's eye to science. Science and Children, 19(7), 30-32.

Hazen, M. (1985). Instructional software design principles. Educational Technology,

25(11), 18.23.
flofmeister, A. M., Engelmann, S., & Carmine, D. (1989). Developing andvalidating science

education videodiscs. Journal of Research in Science Teaching, 26(8), 665-677.
Holland, J., Holyoak, J. , Nisbett, R., &Thagard, P. (1985). Induction: Processes of inference,

learning, and discovery. Cambridge, MA: MIT Press.
I lolliday, W. G. (1975). The effects of verbal and adjunct pictorial-verbal information in

science instruction. Journal of Research in Science Teaching, 12(1), 77-83.
I louston , J. P. (1991). Fundamentals of learning and memory (4th ed.). New York: Harcourt

Brace Jovanovich.
Kashef, A. E. (1991). Visualization with CAD. Technological Horizons in Education

Journal, 19(5), 64-66.
Kearsley, G., & Frost, J. (1985). Design factors for successful videodisc-basedinstruction.

Educational Technology, 25(3), 7.13.
Kozma, R. B. (1991). Learning with media. Review of Educational Research, 61(2), 179-211.

Larkin , J. H. , & Rainard, B. (1984). A research methodology for studying how people think.
Journal of Research in Science Teaching, 21(3), 235-254.

Lavoie, D. R. (1991, April). Enhancing science instruction with hypothetico- predictive
reasoning. Paper presented at the annual meeting of the Montana Academy of
Sciences, Billings, MT.

Lavoie, D. R., & Good, R. (1988). The nature and use of prediction skills in biological
computer simulation. Journal of Research in Science Teaching, 25(5), 334-360.

Lawson, A. E. (1988). A better way to teach biology. The American Biology Teacher, 50(5),

266-278.
Lawson, A E. (1989). Biology: A critical thinking approach. Tempe, AZ: Arizona State

University.
Lawson, A. E., Abraham, M. R., & Renner, J. W. (1989). A theoryof instruction: Using the

learning cycle to teach science concepts and thinking skills. NARST Monograph, 1,
National Association for Research in Science Teaching.

Leonard, W. H. (1988). Interfacing in the biology laboratory: State of the art. The American

Biology Teacher, 50.
Lord, T. R. (1987). Spatial teaching. Science Teacher, 54(2), 32-34.
Lowery, B. R., & Kn irk, F. G. (1982). Micro-computer video games and spatialvisualization

acquisition. Journal of Educational Technology Systems, 11(2), 155-166.
Mason, C. L. (1992). Concept mapping: A tool to develop reflective science instruction.

Science Education, 76(1), 51.63.
Mayer, R E. (1989). Models for understanding. Review of Educational Research, 59(1), 43-64.

63

Merrill, D. M. (1988). The role of tutorial and experiential models in intelligent tutoring
systems. Educational Technology, 28(7), 7-13.

Merrill, M. D. (1987). Prescriptions for an authoring system. Journal ofComputer Based Instruction,
14(1), 1-10.

Midoro, V., Chioccariello, A., °limpet, G., Persico, D., Sarti, L., & Tavella, M. (1988). Interactive
video and artificial intelligence: A convenient marriage. Programmed Learning and
Educational Technology, 25(4), 299-309.

Mullis, 1. V. S., & Jenkins, L. B. (1988). The science report card: Elements of risk and
recovery. Princeton, N. J.: Educational Testing Service.

National Commission for Excellence in Education. (1983). A nation at risk: The
imperative for educational reform. Washington, D.C. Washington, DC: U.S. Gov-
ernment Printing Office.

Nix, D. (1990). Should computers know what you can do with them? In D. Nix & R. Spiro,
(Eds,), Cognition, education, and multimedia: Exploring ideas in high technology.
Hillsdale, NJ: Lawrence Erlbaum.

Novak, J. D., & Musonda, D. (1991). A twelve-year longitudinal study of science concept
learning. American Educational Research Journal, 28(1), 117-154.

Paivio, A. (1971). Imagery and verbal processes. New York, NY: Holt, Rinehart, and
Winston.

Piaget, J. (1975). Biology and knowledge. Chicago, 1L: University of Chicago Press.
Reed, S. K. (1992). Cognition: Theory and applications (3rd ed.). Pacific Grove. CA:

Brooks/Cole Publishing Company.
Reif, F. (1985). Exploiting present opportunities of computers in science and mathematics

education. Journal of Computers in Mathematics and Science Teaching, 5(1), 15.26.
Renner, J. W., Cate, J. M., Grzybowski, E. B., Atkinson, L. J., Surgber, C., & Marek, E.

A. (1985). Investigations in natural science: Biology. Oklahoma: University of
Oklahoma, Science Education Center.

Rigney, J. W., & Lutz, K. A. (1976). Effect of graphic analogies of concepts in chemistry
on learning and attitude. Journal of Educational Psychology, 68, 305.311

Rosenshine, B., & Stevens, R. (1986). Teaching functions. In M. C. Wittrock (Ed.), AERA
handbook of research on teaching (3rd ed.). New York: MacMillan.

Shapiro, M. (1985, May). Analogies, visualization and mental processing of science
stories. Paper presented at the Information Systems Division of the International
Communication Association, Honolulu, HI.

Sherwood, R. D. (1991, April). The development and preliminary evaluation of anchored
iastruction environments for developing mathematical and scientific thinking.
Paper presented at the annual meeting of the National Association for Research in
Science Teaching, Lake Geneva, WI.

Shuell, T. J. (1990). Phases of meaningful learning. Review of Educational Research,
60(4), 531-547.

Simon, II. A. (1980). Information processing explanations of understandings. In P. W.
Juseqyk, & R. M. Klein (Eds.), The nature of thought: Essays in honor of D. 9. Hebb.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Smith, E. E., & Lehman, J. D. (1988). Interactive video: Implications of the literature
for science education. Journal of Computers in Mathematics and Science Teaching,
8(1), 25-31.

Snyder, D. H. (1990). Computer instrumentation and the new tools of science, Journal
of College Science Teaching, 19(3), 171.174.

64

I. 3

Speitel, T. W. (1991). Computer Vision. The Science Teacher, 58(9), 48-51.
Spiro, R. J., & Jehng, J. (1990). Cognitive flexibility and hypertext: Theory and

technology for the nonlinear and multidimensional traversal of complex subject
matter. In D. Nix & R. Spiro (Eds.), Cognition, education, and multimedia:
Exploring ideas in high technology. Hillsdale, NJ: Lawrence Erlbaum.

Tyre, T. (1989). Technology update: Authoring systems. T. H. E. Journal, 17(3), 11-16.
Vasu, E. S., & Howe, A. C. (1989). The effect of visual and verbal modes of presentation

on children's retention of images and words. Journal of Research in Science
Teaching, 26(5), 401-407.

Weiss, I. (1989). Science and mathematics education briefing book. Chapel IIill, N.C.:
Horizon Research, Inc.

Weller, H. G. (1988). Interactivity in microcomputer-based instruction: Its essential
components and how it can be enhanced. Educational Technology, 28(2), 23.27.

Wheatly, G. H. (1991). Constructivistic perspectives on science and mathematics
learning. Science Education, 75(1), 9.21.

Whitehead, A. N. (1929). The aims of education. New York: MacMillan.
Woerner, J. J., Rivers, R. H., & Vockell, E. L. (1991). The computer in the science

curriculum. New York: McGraw-Hill.
Zielinski, E. J., & Sarachine, M. D. (1990). Creativity and criticism: The components of

scientific thought. Science Teacher, 57(8), 18-22.

65

Chapter 5

Computer Visualization: New Window on Mathematics

DAVID A. THOMAS

MARK MITCHELL

Traditionally, mathematicians have used a variety of tables, figures, and graphs to
pose and solve problems and to motivate further study. These visual devices are used
most frequently to depict the given conditions of a problem or proposition and to provide
a logically consistent arena complete with visual cues for exploring the relationships
between the given facts and their logical conseq 4ences. In spite of these benefits, the use
of figurative and graphical reasoning in mathematics education has often been limited
due to a number of factors. First, few teachers or students of mathematics possess the
drawing skills needed to illustrate any but the most simple mathematical objects.
Second, even if a particular teacher is a gifted draftsman, the time required to construct
a detailed diagram may not be warranted given the other demands placed on teachers
and the limitations on class time. Third, teachers and students frequently differ in
regard to the value that they attach to figurative and graphical reasoning. Some people
regard figures and graphs as helpful thinking tools. Others find such devices confusing
or imprecise. In spite of these difficulties, there are many examples of mathematical
visualization in the traditional mathematics curriculum.

Three Examples

Figure 1 shows a unit circle centered on the origin. Given any point P on the circle,
perpendiculars may be drawn from P to the x and y-axes, the points of intersection being
the coordinates of point P. A segment labeled d connects those points, forming a right
triangle with hypotenuse d and right angle at P. For any given pointP, what is the length
of d?

67

Figure 1. The length of diagonal d

Although there is an analytic solution to this problem that begins by writing an
expression for segment d in terms of the coordinates of P, there is an elegant solution
which is based entirely on a symmetry argument. That solution begins by observing
that, by drawing perpendiculars from P to the axes, a rectangle is formed. The segment
d is a diagonal of this rectangle and must be equivalent in length to the second, missing
diagonal from the origin to P. That diagonal is also a radius of the unit circle. Since the
diagonals are equal in length, the segment d has length 1 as well. This problem
illustrates an important strategic principle: If your problem can be modeled using
geometrical objects, look for a symmetry argument as the basis for a solution.

Mathematical visualization is also an important tool in concept development. For
example, calculus students are often taught that the derivative of a curve at a point P
may be thought of as the slope of the tangent to the curve at P. The explanation of that
statement is frequently given in terms of a graph like that shown in Figure 2.

In this approach, a point P1 is chosen to the right of P and a secant is drawn passing
through P and Pl. Next, a point P2 is chosen between P and Pi and the same process
is repeated. A third point P3 is chosen between P and P2, producing a third secant. As
more and more secants are drawn, each successive secant serves as a better and better
approximation of the tangent at P. The objective is for the student to form a kind of
mental movie of all this that corresponds to the mathematical concept of taking a limit.
In this use of mathematical visualization, the intellectual activity consists of forming a
mental animation, rather than a static model, of some process. This dynamic aspect of
visual memory is particularly valuable when the educational objective is to help the
student form a model of a changing relationship between variables.

68

61

When students are asked to prove an assertion like the Pythagorean Theorem,
constructing a suitable geometrical model which both embodies the conditions of the
problem and which also suggests a solution can be very difficult. Figure 3 shows such
a model. Given that QRST is a square and that each of its sides is divided into a segment
of length a and a segment of length b, can you prove that a2 + b2 = c2?

Figure 2. Approximating the slope of the tangent at P

b

b

a

Figure 3. Proving the Pythagorean Theorem

69

Enlarging Our Definition of Visualization

Over the past decade, many scientists and mathematicians have adopted the use of
powerful computer tools for data storage, analysis, and display. More recently, re-
searchers with complex data analysis problems have turned to high-performance
scientific visualization tools capable of showing multivariate displays, often animated
over time. One consequence of this phenomenon is that a number of scientists and
mathematicans are currently searching for a new definition of visualization. For
example,

Visualization... transforms the symbolic into the geometric, enabling research-
ers to observe their simulations and computations. Visualization offers a
method of seeing the unseen. It enriches the process of scientific discovery and
fosters profound and unexpected insights. In many fields it is already revolu-
tionizing the ways scientists do science. (McCormick, DeFanti, & Brown, 1987)

Focusing more directly on the issue of visualization in mathematics, Zimmerman and
Cunningham (1991) state that

Vision is not visualization; to see is not necessarily to understand. In mathemat-
ics, visualization is not an end in itself but a means toward an end, which is
understanding. If mathematics is the science of patterns, it is natural to try to
find the most effective ways to visualize these patterns and to learn to use
visualization creatively as a tool for understanding.

These statements may not qualify as definitions, but they do identify computer
visualization as a powerful new tool in the service of understanding. To further develop
this theme, three examples are presented which illustrate the value of computer
visualization as a tool for concept development in high school and undergraduate
mathematics. Both existing and new technologies will be considered.

Example 1: Fractals, Logo, and Traditional Mathematics

During the 1980's, the study of dynamical systems emerge r+ rs one of the fastest
growing branches of mathematics. Thanks to the efforts of Benoit If andelbrot (1977,
11182), HeinzOtto Pietgen (1986, 1988), Michael Barnsley (1988), James Gleick (1987),
and a number of other researchers and writers, a fascinated public was introduced to
the branch of dynamical systems called fractal geometry. Although the pedigree of
fractal geometry is still being argued by professional mathematicians, the computer
science community has taken this new tool and used it to dazzle the public with
spectacular color graphics, including realistic animations of alien worlds.

Like many other branches of mathematics, fractal geometry may be investigated at
several levels. This example introduces the concept of deterministic, selfsimilar fractals
by using a familiar tool to many elementary and secondary school teachers, Logowriter,
and by making use of a number of mathematical concepts taught at the high etch(of level,
typically in Algebra II. The focus of the illustration is the von Koch snowflake shown in
Figure 4.

53 70

Figure 4. Snowflake curve

The most significant characteristic of the snowflake curve shown in Figure 4 is its
selfsimilarity. Objects that are self-similar repeat some geometrical theme on different
scales with the following result: small pieces of the whole strongly resemble larger
pieces. This quality of self-similarity is one of the attributes most often associated with
the objects commonly called fractals.

Creating selfsimilar objects is really quite simple in principle. In the case of the von
Koch snowflake curve, the construction proceeds as follows. Beginning with an
equilateral triangle (Figure 5), the center third of each segment of the figure is removed
and replaced with two congruent segments arranged as an equilateral"bumpout." This
produces a star like that shown in Figure 6. This star has six points and therefore twelve
segments. Each of these segments is then divided into thirds. The center third is
removed and replaced by small equilateral bumpouts as shown in Figure 7. Repeating
this theme on smaller and smaller scales, the snowflake curve develops the intricate
perimeters shown in Figures 4 and 8

Since constructing such objects with pencil and paper is time consuming, few
mathematicians and fewer mathematics teachers and students over the years have
bothered to explore these type 3 of objects. The general availability of computers and
software packages like Logowriter now make this task much easier and far less time
consuming. Since very few people are capable of imagining the final form of a fractal,
the availability of computer v:aualization tools is a critical factor in bringing this type
of mathematics into the classroom.

Using the Logowriter procedures in Program Listing 1, it is a simple matter to
generate the von Koch snowflake. For example, the Logowriter procedures collected in
Program Listing 1 draw the von Koch snowflake in a matter of seconds. Figure 5 is
obtained using the command DO 0, Figure 6 by DO 1, Figure 7 by DO 2, and Figure 8
by DO 3.

71
b 4

Figure 6. Equilateral triangle

Figure 7. Two-levels of iteration

Program Listing 1

Figure 6. Six-pointed star

Figure 8. Three-levels of iteration

TO DO :N
START
REPEAT 3 [IFELSE :N=0 [FD LI [LINE :Nj RT 1201

END

TO START
MAKE "X 1

REPEAT :N [MAKE "X 3.X)
MAKE "L 1621:X
RG PU HT RT 60 BK 90 LT 30 PD
END

72

85

TO LINE :Y
IFELSE :Y=1 (SMALLEST' (STEPDOWN'
END

TO SMALLEST
FD 1 LT 60 FD RT 120 FD :I. LT 60 FD :14
END

TO STEPDOWN
LINE :Y-1 LT 60 LINE :Y-1 RI 120 LINE :Y-1 LT 60 LINE :1.1
END

Naturally, by changing the shape of the original object from an equilateral triangle
to some other regular polygon, or by changing the shape of the bumpout, a different
fractal will be produced. A discussion of how to do so is found in Thomas (1989).

In presenting the von Koch snowflake to a group of high school students, the
following thoughts may be used to provide a direction for class discussion.

1. After demonstrating the evolution of the curve and discussing the term fractal, ask
* As we increase the parameter controlling the number of levels at which the
object's "theme" is expressed. what happens to the perimeter of the object?
* What happens to the area of the object?
* If you could DC) (infinity), what would the perimeter be? What would the area be?

2 To examine what happens to the perimeter, collect data and look for a pattern.
* First count the number of segments at each "level" and record the data in a table.

n # of segments

0 3 =3

1 4(3) = 12

2 42(3) = 48

3 42(3) = 192

n 4"(3)

* Next observe that the length of each segment may be written as L/(3^), where L

is the length of the side of the original equilateral triangle.
You may then write the perimeter of the curve as
segments)(segment length) = (4'1(3))(L/39 =3L(4/3) = P1(4/3)° , where P. is the

perimeter of the original equilateral triangle. Clearly, as n increases without bound,
the perimeter does the AMC. This is an example of a divergent geometric sequence.

73

3 To find out what happens to the area, follow the same approach.
*Create a table of data based on the triangular areas shown in Figure 9.

Figure 9. Building a snowflake boundary

n s # triangles added
= # of segments
at the previous level

additional area

0 3

1 12 3 3(1/9)

2 48 12 12(1/9)2

3 192 48 48(1/9)3

n 4^(3) 4.1(3) 4°1(3)(1/9)°

If the original equilateral triangle has an area of 1, the area for the curve on the n.th
level of iteration is given by

:11
1 + E4' 10)(1 = I +

Iri 9

which, as n goes to infinity, is a convergent geometric series with sum 1.6.

74

S

4. Summarizing the findings, the von Koch curve in its limiting case has an infinite
perimeter but a finite area.

Additional connections to the secondary school mathematics curriculum may be
developed by investigating the concept of fractal dimension (Thomas, 1989). In the case
of the von Koch snowflake, the fractal dimension is obtained by computing

(log 4) / (log 3) = 1.261859507

where 4 segments replace 3 segments in the course of dividing a side of the polygon into
thirds, removing the center third, and replacing it with an equilateral bumpout
consisting of 2 segments.

By modifying Program Listing 1, it is possible to create a wide variety of selfsimilar
objects. Figures 10.12 show the first few steps in generating three other selfsimilar
objects. Each of these fractals has rotational and line symmetries which could serve as
the focus of a group discussion. The Logowriter code for these fractals is found in
Program Listings 2.4. Students who are familiar with Logowriter and who understand
recursion can modify these program listings to produce many more selfsimilar objects.

Investigations such as the one just discussed cannot take place without appropriate
computer visualization tools. But having the tools on hard doesn't necessarily mean
that teachers and students will use the tools to expand or extend their understanding
of mathematics. Both teachers and students must learn to think visually as well as
symbolically. For some individuals, informal mathematical investigation of fractals
may provide an entertaining context for the development of these traits.

Example 2: Introducing Linear Transformations Using Logowriter

The study of matrix algebra has long been a part of the undergraduate mathematics
curriculum. And because matrix algebra is used extensively in many branches of
science, engineering, and business, most students majoring in those disciplines take
courses in which matrix algebra is used. Unfortunately, the traditional high school
mathematics curriculum has done little if anything to prepare its college boundstudents
for college level matrix algebra. In recognition of this fact, the NCTM's Curriculum and
Evaluation Standards for School Mathematics (Working Groups of the Commission on
Standards for School Mathematics, 1989) calls for the introduction of matrix algebra at
the high school level. Consistent with the Standards 'general goal of making mathemat-
ics a meaningful activity for students and specifically related to the Standards'
emphasis on mathematical connections and transformation geometry, this example
illustrates a visual approach to the introduction of linear transformations.

Using functional notation, a linear transformation T may be represented as T(x,y)
= (x',y') = (ax + by + c, dx + ey + f), where (x,y) is a given point in the coordinate plane
before transformation and (x',y') is the image of the given point after transformation. In
matrix notation, this expression may be written using a 2 X 2 scaling matrix and a 2 X
1 translation matrix as

[yx 14:1[;14cf]

75

BEST COPY AVAILABLE

Figure 10. Variation 1 Figure 11. Variation

76

Figure 12. Variation 3

Program Listing 2

TO DO :N
START
REPEAT 3 [IFELSE :N=0 [FD :LI [LINE :NI RT 1201
END

TO START
MAKE "X 1
REPEAT :N[MAKE "X 3*:XJ
MAKE "L 162/ :X
RG PU HT RT 60 BK 90 LT 30 PD
END

TO LINE :Y
IFELSE :Y=1 [SMALLEST] (STEPDOWNI
END

TO SMALLEST
FD :L RT 60 FD :L LT 120 FD :L RT 60 FD :L
END

TO STEPDOWN
LINE :Y-1 RT 60 LINE :Y-1 LT 120 LINE :Y.1 RT 60 LINE :Y-1
END

Program Listing 3

Copy procedures TO DO, TO START, and TO LINE friin Program Listing 2, and then add:

TO SMALLEST
LT 45 FD :L*1.414 RT 45 FD :L RT 45 FD :1.414 LT 45
END

TO STEPDOWN
LT 45 LINE :Y-1 RT 45 LINE :Y-1 RT 45 LINE :Y-1 LT 45
END

77

Program Listing 4

TO DO :N
START
REPEAT 3 [IFELSE :N=0 [FD :L] [LINE :N] RT 120
END

TO START
MAKE "X 1
REPEAT :N[MAKE "X 4:X]
MAKE "L 108/:X
RG PU HT RT 60 BK 50 LT 30 PD
END

TO LINE :Y
IFELSE :Y=1 [SMALLEST] (STEPDOWN]
END

TO SMALLEST
FD :L LT 90 FD :L RT 90 FD :L RT 90 FD :L FD :L
LT 90 FD :L LT 90 FD :L RT 90 FD :L
END

TO STEPDOWN
LINE :Y-1 LT 90 LINE :Y-1 RT 90 LINE :Y-1 RT 90 LINE :Y-1 LINE :Y-1
LT 90 LINE :Y-1 LT 90 LINE :Y-1 RT 90 LINE :Y-1
END

A better approach is to use a single 3 X 3 matrix which combines both the scaling and
translation operations.

x b[y.11adeclily1

1 001 1

The expression for T(x,y) shows that the x- and y-coordinates of the image point
(x',y') are formed using a linear combination of the x and y-coordinates of the given
point. It is also clear that the transformation is defined for any choice of (x,y). Although
this definition may be accurate, it does not provide any geometric sense of the
consequences of applying the transformation to a given point, line, or other object in the
plane. Supplementing this analytic definition of a linear transformation with a visual
model improves the situation considerably.

Visually, a linear transformation can be thought of as a function that takes
rectangles as an input and returns parallelograms as an output. Under linear transfor
mations, straight lines remain straight, though their length and direction may change.
Another consequence is that parallel lines remain parallel. Lines that intersect before
also intersect after transformation, though the angle formed by the two lines may

78

j 1

change. Added to the previous definition, the concept of a linear transformation
suddenly takes on the reality of a visual model. For many students, this in itself is
enough to motivate further study into the nature of linear transformations. Logowriter
Program Listing 5 provides a limited opportunity to do so. The limitation occurs in that
the only transformations allowed are those that take a rectangle as an input and return
a rectangle as an output. No rotations or shears are permitted so as not to overly
complicate the student's first experience with linear transformations.

Program Listing 5

to do :n :w :h :xshift :yshift
rg ht
ref
make "xscale 1
make " yscale 1
make "ax -80
make "ay 80
shrink :n
end

to ref
pu setpos [-80 80] pd rt 90
repeat 4 [fd 160 rt 90]
end

to shrink :n
repeat :n [make "xscale :w ":xscale
make " yscale :h ":yscale
make "bx (:w*:ax + :xshift)
make "by (:h ":ay + :yshift)
pu fd (:bx :ax) 190 fd (:ay - :by) 1t 90 pd
repeat 2 [fd :xscale*160 rt 90 fd :yscale*160 rt 90]
make "ax :bx
make "ay :by
show pos]
end

The syntax for using the LINTRAN procedures is as follows:

DO (# reps) (xscale) (yscale) (x-shift) (y shift)
where (# reps) is the number of times that the transformation is

to be applied to the starting rectangle. Use I initially.
(x-scale) is the factor by which the horizontal dimension of the

starting rectangle is to be shortened or lengthened. Use
.5 initially.

79 j

(y-scale) is the factor by which the vertical dimension of the
starting rectangle is to be shortened or lengthened. Use
.5 initially.

(x-shift) is the horizontal amount by which the transformed
rectangle is to be shifted.

(y-shift) is the vertical amount by which the transformed rect
angle is to be shifted.

Taking care to insert spaces between the parameters, a first use of the LINTRAN
procedures might begin with the command

DO 1.5.5.105

A more interesting result will be obtained by repeatedly applying the same transforma-
tion to the plane, resulting in a shrinking set of rectangles. For example, if you try DO
10 .8 .7 -1 5 you obtain the image seen in Figure 13.

Figure 13. Fixed points and contractive affine maps
After a little experimentation with this program it is not unusual for students to

observe that for certain linear transformations, repeated applications of the transforma-
tion shrink the starting rectangle to a point on the computer screen. A more subtle
observation is that this point may be located anywhere in the plane, not just inside of
the starting rectangle. Another observation of interest is that this process represents
composing the transformation with itself over and over. These observations may be used
as a motivation for introducing the concept of fixed points.

Figure 14 shows a unit square on an inverted coordinate system such as is found on
computer screens. The corners of the square are ((0,0), (1,0), (0,1), (1,1)).

If a linear transformation matrix T is defined as

80

v3

=
-1/2

0
0

0
1/2
0

7/16
1/4
1

then any point which does not move under the translation will be a solution to the matrix
equation

1/2 0 7/16 x x

0 1/2 1/4 y = y
0 0 1 1 1

In this case, the fixed point is (7/8, 1/2). This is the only point in the plane which does
not move under the transformation. And, since the transformation is a contraction
mapping, moving points closer together, every point on the plane moves closer to the
fixed point with successive applications of T. For this reason, fixed pointsof this sort are
called attractors. If you can run this process as a mental movie, you should imagine the
entire plane being drawn into the attractor as if the fixed point were a kind of
mathematical black hole.

From considering one linear transformation and its fixed point, we now move on to
consider a system of three linear transformations {T,, T2, T3} where

1/2 0 0
= 0 1/2 0 T2 = 0 1/2 0 T3 = 0 1/2 1/2

t__0 0 1_

rT/2 0 1/2 /2 0 1/4

0 0 1

T
° 0 1

Each of these transformation is a contraction mapping with x-scale and y-scale factors
of 1/2. The three transformations differ in their fixed points (0,0), (1,0), and (1/2,1)
respectively.

Under each of these transformations, the starting unit square would be mapped to
a smaller square as shown in Figure 15. Under the first transformation, the unit square
is mapped to the shaded region marked T,. Similarly, the second and third transforma-
tions would map the unit square to regions Ts and T3 respectively. Note that no region
of the original unit square would be mapped to the unshaded part of Figuve 15. It is also
clear that the shaded regions occupy 3/4 of the original area of the unit square. These
shaded regions show where a given point in the original unit squaremight end up after
one transformation of the unit square by one of the three linear transformations.

We now consider the composition of two transformations, T, and T, and ask the
question, "Where might the image of a point in the original unit square end up after it
undergoes two successive mappings?" Figure 16 shows nine ,,haded regions, each a
different ordered pair of transformations. Figure 16 also illustrateo the fact that matrix
multiplication is typically not commutative and that the shaded region mow occupies 9/

16 of the area of the original unit square.
Following this same line of reasoning, Figure 17 shows the result of applying three

successive transformations to the unit square. The composition of three transformations
produces 27 possible regions where an image point may be found, constituting 27/64 the
area of the unit square.

81

(1,0)
X

Figure 14. Typical computer Figure 15. After one iteration
screen coordinates

Figure 16. After two iterations
of the IFS

82

of the IFS

Figure 17. After three iterations
of the IFS

What happens as we continue to apply more and more transformations? In general,
after n transformations, the shaded portion of the figure will consist of 3 regions
occupying (3/4)' of the unit square. As n approaches infinity, the number of regions goes
to infinity while the area occupied by those regions goes to zero. The theoretical object
that emerges from this process as n goes to infinity is an exquisitelydetailed set of points
called the Sierpinski gasket. Figure 18 shows the general form of this object.

Figure 18. After many iterations of the IFS

The process just described can be modeled quite easily using the set of Logowriter
procedures found in Program Listing 6. To run the program, simply give the following
commands: DO 0; DO 1; DO 2; etc.

Program Listing 6

to do :n
rg ht
pu setpos [-100 120] pd
exp2 :n
make "s 160/:x
ifelse :n > 0 [tribox :n]
(fd 160 rt 90 fd 160 rt 135 fd 160'1.4142 rt 135 pu fd 15 rt 90 fd 5 pd fill]

end

to exp2 :n
make "x 1
repeat :n [make "x 2:x]
end

83

to box :n
repeat 2(fd :s it 90]
rt 45 fd :31.4142 A 160
pu fd 3 pd fill pu bk 3 It 25 pd
end

to tribox :n
ifelse :n = 1 [box :n fd :s box :n rt 90 fd :s It 90
box :n A 45 bk :s*1.4142 It 45]
[make "x :x/2 tribox :n-1 fd :s*:x tribox :n-1 rt 90 fd :s*xlt 90
tribox :n-1 rt 45 bk :s *1.4142 *:x ft 45 make "x :x *2J
end

Clearly, the Sierpinski gasket. ts our definition of a self-similar object. What is most
astonishing about the whole exercise, however, is that a system of threelinear equations
having three fixed point attractors ends up generating a "strange" attractor for the
system with consists of an infinite number of points, the Sierpinski gasket. What is even
more astonishing is that a very simpleprocedure exists for generating an approximation
for the strange attractor of such systems. Michael Barnsley (1988) calls it the Chaos
Game.

Given any system of contractive linear transformations, the Chaos Game proceeds
as follows. A random seed point is selected in the plane. One of the linear transforma-
tions of the system is randomly selected and the seed point's image is determined and
its location plotted. The coordinates of this point are then used as the input for a second
randomly selected linear transformation. The entire process is repeated thousands of
times, generating a set of several thousand points on the computer screen.

It is a simple matter to write a BASIC program such as found in Program Listing
7 to mimic this process. If you run that program, you will get an object that looks like
a Christmas tree (see Figure 19).

Program Listing 7

1LIST 2RUN 3LOAD" 4SAVE" 5CONT4 --

10 SCREEN 1
100 Xis 0:Y=0
110 I = INT (4*RND (1) + 1)
120 IF I = 1 THEN VVX = .8*X + .18 : VVY = .8*Y + .35
130 IF I = 2 THEN 1NX = .8*X + .18 : WY = .8*Y + .12
140 IF I = 3 THEN WX = .4*X + .3*Y + .27:WY = -.3*X + .4*Y + .38
150 IF I =4 THEN WX = .4*X -.3"Y + .27:VVY = + .4*Y + 9.000001E-02
160 X WX r = WY
170 PX = INT (X*250) : PY = INT ((1-Y)*250)
180 PSET (PX, PY)
190 GOTO 110

Figure 19. Fractal leaf

If you use this approach to iterate the set of transformations T1, T2, and Ts given

above, you will obtain the same image generated by the Logowriter procedures given in
Program Listing 6. That surprising result is explained by the fact that after 8.10
iterations, the regions determined by the transformations are smaller than the pixels
on the computer screen. It doesn't matter whether you are plotting points or regions.

After a few iterations, both results are indistinguishable on your computer screen.
Under such circumstances, it is far more efficient to plot points rather than regions of

the plane.
Another surprising result is that no matter how many times you run the Chaos

Game, the images generated always look the same, even though the random selection
of transformations leads to a different setsof points for each image. The explanation for

this astonishing result is that both images are approximations of the same theoretical
entity, called the "strange attractor" of the iterated function system (IFS). How can this
be? It's like pea plants all grown from the same pod of seeds. They may differ in a few

details, but given basically the same sun, water, and soil, they will turn out remarkably
similar. The strange attractor of an IFS system corresponds to the pea plant you'd get
if it had the ideal amount of sun and water and a perfect soil in which to grow.

Here is a mathematical metaphor for growth in the natural world. You are an
approximation of the strange attractor determinedby your DNA! Every day of your life,

your cells repeat the same setof operations. Sure, if you'd had morevitamins, you might

have grown taller. And if you'd never had that childhood disease you might have been

stronger. But you would still be YOU, only better.
You may be able to guess a few of the broad features of an attractor before it is

created, but you can never know the specificpoints that will be produced along the way.

85 J 3

The unpredictable nature of the random process used to generate those points guaran-
tees that you can never see the final result without actually going through all the
intermediate steps. To an observer, the process is chaotic even though the result is
creative.

Here then is an aspect of mathematics for which computer visualization is indis-
pensable. Students can define IFS systems, run them on a computer, and watch the
s6.ange attractors materialize on the screen. With a little practice, strange attractors
can be designed to have particular characteristics. Two particularly helpful tools for this
type of work are the Desktop Fractal Design System and Chaos: The Software.

The first two examples of computer visualization have focused on topics related to
fractal geometry, a relatively new branch of mathematics. In both cases, the technology
required has been simple, a PC and a copy of Logo. The third example deals with a new
technology and an old topic, number theory.

Example 3: Exploring Modular Arithmetic

Think back to when you first learned how to divide one whole number by another,
say 21 divided by 5. You were probably taught to write your answer as a quotient plus
a remainder, in this case 4 R 1. Later on, you abandoned remainders as fractions and
decimals took over the job of describing the "leftovers" typically obtained in division
problems. This example picks up where remainders left off by introducing the notion of
modular arithmetic.

Returning to the problem 21 divided by 5, we can define the expression 21 (mod 5)
to mean the remainder obtained when 21 is divided by 5. In this case, we can write 21
(mod 5) 1, read "twenty-one mod 5 is congruent to 1." There are many other whole
numbers n congruent to I (mod 5). In general if n = 5k + 1, where k is a whole number,
then n (mod 5) 1. For example, the numbers 6, 11, 16, 21, 26, and so on are all congruent
to 1 (mod 5). The set of all whole numbers n congruent to 1 (mod 5) is called the
congruence class [1]. There are four other (mod 5) congruence classes corresponding to
remainders of 0, 2, 3, and 4. The names of these congruence classes are [0], [2], [3], and
141. As defined above, each congruence class consists of infinitely many whole numbers,
all of which yield the same remainder when divided by 5. It is clear, however, that each
congruence class has a smallest non-negative member. For instance the smallest
member of [3] is 3. The technical term for the smallest non-negative member of a
congruence class is the least residue of the congruence class. This example is specifically
concerned with the least residues associated with the congruence classes produced in
a variety of problems involving modular arithmetic.

Now that it is clear how an arithmetic expression such as 21 (mod 5) is to be
evaluated, it is natural to extend this concept to include algebraic expressions such as
x (mod 5), where x is any whole number. The only possible answers belong to the five
congruence classes [0], [1], [2], [3], and [4]. In this sense mod can be thought of as an
operator like multiplication or division, producing a graphable result. What would a
graph of this look like? As Figure 20 suggests, the graph of x (mod 5) consists of discrete
points arranged in a sawtooth pattern. This pattern is even more pronounced (see
Figure 21) when we redefine x to be any positive real number. Figure 21 shows that the
height of the graph is determined by the size of the modulus, in this case 5. Choosing
a larger modulus produces a higher graph, i.e. a graph with longer teeth.

86
CJ

5

Os
0

5

f(x)=s(mod5)

Figure 20. f(x) = x (mod 5), x e Non-negative Integers

10

Figure 21. f(x) = x (mod 5), x e Non-negative Real Numbers

The expression 2x (mod 5) is graphed in Figure 22. Multiplying the variable x by 2
has the effect of shortening the base of each tooth by one-half because the expression
runs through the congruence classes twice as fast as for x (mod 5). This is similar to the
effect observed when graphing the trigonometric functions: doubling the coefficient of
the angle halves the period. In general, the graph of the expression Ax (mod C) will be

a sawtooth curve with period C/A and amplitude C. Finally, as with the trigonometric
functions, the introduction of a constant B in the expression Ax + B (mod C) produces

a phase shift in the graph of Ax (mod C). Figure 23 shows this in the case of the graph
of 2x + 3 (mod 5). In general, the amount of phase shift is given by B/A.

At this point, we can consider more complicatedexpressions such as Ax + B (mod Cx

+ D) in which the modulus of the expression is not constant but is itself a function of x.
The introduction of the terms Cx + D in the expression for the modulus forces us to
abandon the notions of a constant period and phase shift. Graphically, this results in
teeth of varying width and height. Figure 24 shows the graph of the expression 7x + 2
(mod 3x + .5). Relating the expression to the graphand remembering that the amplitude
of any tooth is limited by the value of the modulus at that point, it is not surprising that
the teeth appear to shrink in size as they approach the point x = 5/3, the solution to the

equation 3x + '5 = 0.

87:
U

Figure 22. f(x) = 2x (mod 5)

a

Figure 23. f(x) = 2x + 3(mod 5)

step = .1
scale = 5

5

f(x)== 230. 3 (mod 5)

40 141017

Figure 24. f(x) = 7x + 2 (mod 3x + 5)

88

101.

10

What kinds of questions might project-mind3d high school students ask about this
expression and its graph? A number of possibilities are suggested by the size, shape and
location of the teeth. For instance, at many points of the graph, the downward sloping
edge of the teeth appears to meet the x axis. For what values of x is the value of the
expression equal to zero? Does each tooth have a straight line for its downward slope?
If so, does each tooth (or pair of teeth) have its own unique downward slope? What about
the curve connecting the peaks of all the teeth to the right of 5/3. Are there infinitely
many peaks (although verysmall) as you approach the point 5/3? Are they on a straight
line? If so, what is that line? Where is the graph continuous? Where are its
discontinuities? These and other questions can be generalized for the expression Ax +
B (mod CY + D). Here is a topic for serious investigation and which might serve as the
basis for a science fair project.

Students interested in such questions are certainly not limited to the consideration
of expressions involving only linear terms. Figure 25 shows the graph of x2- 40,000 (mod
4(x2- 20500)). Focusing on the wshaped object in the centerof the graph, one might ask
whether the curve in this region is continuous or if there are any other locations where
the curve might be continuous. The apparent symmetryof this curve about the origin
could also be investigated. At this point, it should be pointed out that the actual
complexity of the graph is far more intricate than revealed by the plot shown in Figure
25, which was created by stepping across the number line in regularly spaced intervals
of 1 unit per pixel. The details of each small region must be investigated using suitable
enlargements of the region. This is accomplished by reducing the step size. For example,
Figure 26 shows an enlargement of a portion of the region just to the right of the w
shaped object in the center of the graph in Figure 25.

So far, we have examined tl, s graphs of both linear and quadratic expressions given
in terms of one variable, x, by plotting the value of each expression along theyaxis. An

extension of this approach is to define an expression in terms of two variables, x and y,

and to plot the value of the expression along the z axis. In representing such expressions
graphically, we will use surface plots (mesh) and color coded raster graphics. T h e
first example of this approach is

x2 +y2- 40,000 4(mod (x' + y2 - 20500)),

an extension of the expression used to plot Figures 25 and 26. A surface (mesh) plot of
this expression is shown in Figure 27 and a gray scale raster graphic is shown in Figure

28. Although both of these graphics offer insight into the attributes of the surface

defined by the expression, they do not offer the same insights. Figure 27 emphasizes the
fractured, erratic nature of the surface. Figure 28 suggests that there are intricate,
subtle details to be found in the apprently chaotic landscape of Figure 27. This
impression is immediately heightened when the viewer sees the image in full color (see

Color Print 1).
In spite of the visual appeal of such graphics, it is not always wise to accept them

at face value. In other words, seeing should not always be the same as believing when

working with scientific visualizations. For instance, manyof the interesting details seen
in Figure 28 and Color Print 1 are not "really there" at all. That is, the raster graphic

images seen in Figure 28 and Color Print 1 contain both good and bad information about

the object being visualized.

1.
89

step.. 1
scale . 1

Figure 25. f(x) = x2 - 40,000 (mod 4(x2 20,500))

step = .08
scale - 2

.10

Figure 26. Zoom on Figure 25

As Alex Pang explains in his chapter, every attempt at scientific visualization is
ultimately conducted in a computer visualization environment with inherent limita-
tions on data sampling and graphic rendering. In the case of Figure 28 and Color Print
1, the complexity of the object being visualized so exceeds the resolution of any existing
computer's sampling and rendering procedures that misleading graphical elements are
introduced. The point of this observation is that efforts at visualization must include
critical thinking about the relative complexities of the object being visualized and the
system doing the visualization.

90

103

Figure 27. Surface mesh plot

The procedure used to create Color Print 1 was mathematically straight forward but
technologically sophisticated. First, a computer program was written in C that coin-
puted the value of the expression x2 + y2 40,000 (mod 4(x' + y2 20600)) for a set of
307,200 regularly spaced points in the XY plane near the origin (see Program Listing

8).

91 1

Figure 28. B&W raster graphic

Program Listing 8

#define mnt 9
#define cvt double
#define tcvt (cvt)
#define tf (double)
#define cta fabs

/* Max Number of Terms */
/* Calculation Variable Type */

/* To Calculation Variable Type */
/* To (double) Float */

/* Calculation Type of Absolute values */

typedef struct /* Each term in f(x,y) is of form: */
/* tk*[(X*ix+xk)Aex]*[(Y*iy+yk) A ey] */

int nt; /* Number of Terms */
double ex[mnt-1], ey[mnt-I]; /* Exponent on the X, Y */
cvt ix[mnt-1], iy[mnt-1]; /* Inner constant of X, Y */
cvt tk[mnt]; /* 'Term Kohstant */
cvt xk[nint-1], yk[mnt-l1; /* X, Y Konstant */
double rt; /* RooT of equation */
} funct;

typedef struct

int amx, amy, amc, /* Absolute Max X, Y, Color */
gd, gm, cm; /* Graph Drive, Graph Mode, CMode */

int mc, I* Max Color */

92

10

lipx, lipy, / Lower Left, Image Position: X, Y on the screen */
uipx, uipy; P Upper right Image Position: X, Y on the screen */

cvt sx, sy, stx, sty, P Start X Y, STep X Y */
gl; P Ground Level */

double sd; /* Scale Down (or up) */
} params;

/* This is the main drawing procedure. It does the final
calculation and puts the value in an array to stored in
a file or as a color on a graphics screen. */

char dp(fz,fn,p,tom) /* Draw Picture */
funct *fz, *fn; /* the two sets of parameters for the functs */
params *p; /* the parameters for drawing the picture */
int torn; /* Typo of Mod: FMOD or RMOD */

cvt xc, yc, cc;
int x, y;
char c='a';

/* X, Y, and Color variables for Calculating */
/* X Y posotions on screen */
P to test what character was typed */

/* SET UP GRAPHICS AND PRINT INFORMATION AT TOP OF GRAPHICS SCREEN */
initgraph(4->gd,&p->gm,"");
gotoxy(1,1);
printf("T to terminate drawing; \n");

*/ printf("sx=%Ifsy=%If stx=%If sty = %lf sd=%If ",
p->sx, p->sy, p->stx, p->sty, p->sd);

if (tom=--1) printf("fmod\n");
else printf("rmod\n");

printf("AFTER PICTURE DRAWN: S to save; then Z to Zoom.\n");

for(y= p. >lipy, yc=p->sy; y>=-p->uipy; y--, yc=-ye+p->sty)
for(x=p >lipx, xc=p >sx; x<=p->uipx; x++, xc=xc+p->stx)

cc=calcf(fn,xe,yc);
if (cc!=0) Pi here is where the color is assigned to the screen */

if (tom=--I) cc=tcvt(fmod(calcf(fz,xc,yc),cc) p->gl) * p->sd;
else cc= tcvt(rmod(calcf(fz,xc,yc),cc) - p->gl) * p->sd;

putpixel(x,y,(int)(cc));

if (kbhitO!=0) /* CHECK IF A KEY WAS HIT */

c=getch0;
if (c==11 { Y=-I; x=p->amx+ I ; }

else c='a';
/* end of IF KBHITO!=0 */
/* end if FOR(X=0 to 13->MX) */

93 1 0

return(c);

I* This procedure calculates the value of a function based on the
values of the parameters in F and the X Y values and returns
this value through the function. 'V

cvt calcf(f,x,y)
funct *f;
cvt x, y;

CALCulate Function */
/* calculates the function, fz or fn, */
/* depending on which is passed to it */

1

int c; /* a counter */
cvt t=f->tkif->nt-11, xt, yt; /* Total of all the terms added up */

if (f->nt>1)
for(c=0; c <f- >nt -l; c++)

xt=power((f->ixicrx+f->xlt[c]),f->exicl);
yt=power((f->iyicry+f->yklep,f->ey(c));
t=t+xt*yt*f->tk(c);

if ((t!=0) && kl->rt!=v1)) t=power(t,f->rt);
return(t); /* returns always positive values because of log */

/* The functions calculates the value of a number N raised to the
P power. The main purpose of this function is to preserve the
sign of the number N. For example, power(-3,2)=9, but
power(-3,3.5)=46.76537... */

cvt power(n,p)
cvt n;
double p;

int pt=(int)(p),
cvt nt=0;

I* This calculates N to the P */

/* integer pert of the exponent, PowerTemp */
/* NumberTemp, contains finally N to the P */

if ((n!=0) && (p!=0))

nt=v1;
p=p-tf(pt);

if (pt<O) while (pt<O) { nt=nt/n; pt + +;
else while (pt>0) (nt=nt*n; pt;)

nt=nt*exp(log(cta(n11 *p);

else if (p==0) nt=1,

94

return(nt);

/* This is my own version of the MOD operator with the following
differences:

fmod
7.3000 (mod 4.5000) =
7.3000 (mod -4.5000) =

rmod
2.8000
2.8000

2.8000
-1.7000

-7.3000 (mod 4.5000) = -2.8000 1,7000
-7.3000 (mod -4.5000) = -2.8000 -2.8000 */

cvt rmod(n/m)
cvt n, m;

long q=(Long)(n/m);
cvt rm=n-m*tcvt(q);

if (rm*m<0.0) rm=rm
return(rm);

m;

/* Real MOD, same as fmod(double x,y); */

/* Quotient */
/*ReMainder */

Program Listing 8 shows a portion of the code used to calculate the data that is the

basis of the visualization shown in Color Print #1, the most important function being
PP (Draw Picture). In DP, the value of the mod expression is calculated point by point
and plotted on the screen or put into an array to be stored into a file. The other three
functions are support procedures and are described in comments found in the following
program listing. It should be noted that the algorithms presented here are written to

work with a Borland C compiler. The algorithms are not necessarily efficient or easy to
read nor are they complete and ready to compile. They are presented here to illustrate
the approach taken in writing the program. Complete copies of the source and
executable code for both the PC and Cray versionsof this program are available on disk
(specify format) from the authors for $5.00.

The complete version of this program was sent via the Internet to a Cray Y-MP
supercomputer at the National Center for Supercomputing Applications (NCSA) at the

University if Illinois at Urbana-Champaign for compiling and execution. The 480 X 640

array of floating-point numbers corresponding to the expression's value at each of the

307,200 poir s in question was then transfered back to Montana State University over
the Internet and saved on a Macintosh Ilci computer. Visualization of the data was
accomplished using the NCSA Scientific Visualization Software Suite and PDlmage,
both of which are in the public domain. Both of these tools are easy to use and offer a

wide variety of data analysis and display options. For example, in Figure 29 PDlmage

is used to plot the functional values along a horizontal line segment drawn through the

origin. This feature is particularly helpful when investigating complex surfaces, as it

allows the researcher to first simplify the problem to that of examining a collection of

cross sections of the surface.

' 6
95

.114111aidit
I Lilt yowls

iff)

bar

dl A

\ de

,e
woo

Grey Mop

Options Enhance linelyze

00

00

Figure 29. Cross section using PDlmage

Special Teel Windows
11126

Plot

N-1115 Ilta0101 4I Calibrated()

By examining visualizations such as those shown in Figures 28, 29, and Color Print
#1, questions similar to those posed with regard to Figure 24 and 25 may be asked. For
example, how do cross sectional slices (see Figure 29) change as the line defining the slice
moves away from the center? Are there regions where the surface defined by the
function is both continuous and differentiable? What shapes do the 3-dimensional
"teeth" take on? And so on. Posing such questions is itself a creative mathematical
endeavor rarely encountered in high school or undergraduate mathematics. Visualiza-
tion tools make this type of activity possible for novice mathematicians who might
otherwise never attempt a mathematical investigation on their own. In that sense,
visualization tools open new windows on mathematics to students.

Looking Ahead

The use of images to stimulate curiosity, define relationships, and express emotion
is one of mankind's most characteristic traits. Using a variety of technologies, business-
men, governmental officials and a host of other professionals routinely create, transmit,
and receive images from all over the world As fiber optics cables reach more and more
communities, schools will gain access to the international academic telecommunica-
tions networks like Internet and Bitnet. When that happens, the teachers and students
in those schools will join a kind of international community in which the exchange of
ideas takes place at the speed of light. Powerful computing resources will become

ailable. Vast storehouses of information will evolve. And the experience we call "going
to school" will gradually change as teachers and students adapt to life in the Information
Age.

96
1 u

We look forward to a variety of changes in school science and mathematics. As the
cost of computer resources comes down, we believe that students will spend more and
more time organizing, analyzing, and visualizing meaningful date. As patterns are
found in the data, abstractions will be introduced to summarize the students' findings.
And as school mathematics becomes more inductive, it will be used more and more as
a tool of school science. In science classes, computer modeling and simulation will help
students to understand the invisible world of the atom, unimaginable forces near the
surface of a black hole, and the complex relationships found in all living systems. Even
simulation itself will come under study as students ask the question "To what extent
does a given simulation adequately model the real world?" And with greater and greater
frequency, the exclamation, "Now I see!" will ring throughout classrooms around the
world.

References

Barnsley, M. (1988). Fractals everywhere. San Diego: Academic Press.
Chaos: The Software. Computer software available from Autodesk, 2320 Marinship Way,

Sausalito, CA 94965.
Desktop fractal design system. Computer software available from Academic Press, Inc..

1250 Sixth Ave, San Diego, CA 92101.
Gleick, J. (1987). Chaos: Making a new science. New York: Viking.
LogoWriter. Computer software available from Logo Computer Systems, Inc., New York.
Mandelbrot, B. (1977). Fractals: Form, chance, and dimension. San Francisco: W.11.

Freeman and Co.
Mandelbrot, B. (1982). The fractal geometry of nature. New York: W.H. Freeman and Co.
McCormick, B.H., DeFantini, TA, & Brown, M.D. (1987). Visualization in scientific

computing. Computer Graphics, 21(6).
NCSA scientific visualization software suite. Computer software available from the

National Center for Supercomputing Applications, 605 East Springfield Avenue,
Champaign, IL 61820.5518.

PD image. Computer software available by anonymous FTP from alw.nih.gov in the /pub/
image directory. Author: Wayne Rasband, wayne@helix.hih.gov.

Peitgen, H.O., & Richter, P. (1986). The beauty of froctals. New York: SpringerVerlag.
Peitgen, H.O., & Saupe, D. (Eds.) (1988). The science offractal images. New York: Springer-

Verlag.
Thomas, D.A. (1989). Investigating fractal geometry using LOGO. Journal of Computers

in Mathematics and Science Teaching, 8(3).
Working groups of the commission on standards for school mathematics. (1989). Curricu-

lum and evaluation standards for school mathematics. Reston, VA: NCTM.

Zimmerman, W., & Cunningham, S. (1991). Editor's Introduction: What is mathematical
visualization? In W. Zimmerman & S. Cunningham (Eds.), Viqualization in teaching
and learning mathematics. Washington, DC: Mathematical Association of America.

97

Chapter 6

Visualizing Computer Science

ROCKFORD J. Ross

Introduction

If an ordinary picture is worth a thousand words, what is the value of a full-color,
three-dimensional, animated view of a complex scientific or mathematical process
whose parameters can be tinkered with on the fly? This question has captivated the
imaginations of science and mathematics educators, as powerful computers capable of
producing high-quality graphical images become more readily available in the class-
room. Chemistry, mathematics, physics, and virtually all other sciences come alive in
the context of well-done computer visualizations, clarifying concepts that may other-
wise be difficult or time consuming to teach and learn. Teachers find that computer
visualization aids allow them to explore issues in the classroom that before seemed too
dry and murky for most students to grasp. And the students, themselves, are frequently
enamored by the immediate feedback and element of fun afforded by the computer, often
spending time on their own to experiment with scientific concepts through the
visualization system. The potential benefits of computer visualization on science and
mathematics education are simply enormous.

In this chapter we explore the use of computer visualization as an aid for teaching
and learning computer science. At first it may seem surprisingor perhaps even a little
oddthat computer visualization techniques would be applied to computer science.
After all, what we see on the computer screen (even the visualization of, say, aphysics
experiment) is actually a visualization of computer science as well, isn't it? Well, no not
really. To understand why, and to see how computer visualization can play an effective
role in teaching and learning computer science, a clarification of this discipline is
probably in order. The following section, therefore, provides an introduction to comput-
er science as a prelude to the laterdiscussions of computer science visualization systems;

99 1 t

no previous knowledge of computer science on the part of the reader is assumed in this
section. The third section then begins a discussion ofvisualisation techniques that work
for computer science, beginning with program animation. Algorithm animation is the
topic of the fourth section. The fifth section describes other visualization techniques of
interest in computer science education, and the final section gives a summary of the
chapter.

Background

While most young educators today are trained in the use of computers and
understand something about their applications, fewer have actually had training in
computer science. In this section a brief tutorial on the science of computing is provided
as a basis for the later sections that cover computer science visualization systems.
Readers who already have a good grasp of computer science can skip to the third section
directly.

Computer ScienceA Definition

Computer science as a discipline always seems to be embroiled in some identity crisis
or another: just what is computer science anyway? Is it programming in Basic, Logo,
or Pascal? Is it the application of the computer to common problems, such as word
processing, databases or spreadsheets? Is it the design of computer hardware? Actually,
none of these things captures the essence of computer science, but it isn't any wonder
that there is a cloud of confusion surrounding the discipline: unlike other sciences, such
as physics or chemistry, computer science is associated with a tangible, real-life
objectthe computerthat nearly every person interacts with in one way or another.
Therefore, nearly everyone has some (possibly erroneous) idea about what computer
science must be. And therein lies the rub. Computer science is really not about the
computer at all, but about computing. (Why don't we call the discipline computing
science rather than computer science, then? Good question. As noted already, the
discipline has faced numerous identity crises, one of which was what to name it.
Although other names may be better, computer science has stuck, for better or for
worse.)

While many different formal definitions of computer science have been proposed,
most can be distilled simply to this: Computer Science is the study of problems and their
solutions on a computer. An elaboration of this definition and a thorough description of
the entire academic field of computing can be found in the widely referenced article
Computing as a Discipline (Denning et al., 1989); this paper was the inspiration for the
most recent revisions to computer science curricula at post-secondary institutions, as
described in Computing Curricula 1991 (Tucker et al., 1991). It is also being used as a
basis for deciding what should be taught for computer science in secondary schools
(Merritt, 1992; Taylor et al., 1992). The trend is towards incorporating more computer
science in secondary schools rather than just computer programming or computer
literacy; as these changes gradually occur, the need for supporting teaching and
learning aids, such as the visualization systems described here, will become more
important.

100

1
1)

Our shortened definition of computer science has three focal points: problems,
solutions, and computers. Any computer visualisation of computer science should
therefore shed light on these concepts. To better understand them, let's examine them
in order.

Problems

To qualify for study within the science of computing, a problem must pass muster
on a few criteria:

1. A problem must, in general, have an infinite number of instances. If this were not
the case, the answers to all of the finite number of instances of a problem could be
computed just once and stored in a table for future reference. This approach obviously
won't work, however, for problems that have an infinite (or impractically large)
number of instances. In this case rather than computing answers ahead of time and
providing a table of the answers as the solution to a problem, one must instead
provide a method for computing an answer for any problem instance as the need
arises. 'I nen, when the answer to a particular instance of the problem is required,
the method for computing the answer is applied to the problem instance to get the
answer.

2. The problem must be well-defined. If we couldn't agree about what the problem is,
we surely wouldn't agree on a solution to the problem. Thus, while something like
"What is the meaning of life?" is a problem for most people, it does not lie within the
purview of computer science because it is not well-defined.

Example 1

An example of a simple problem that meets the above criteria is: Compute and print
the sum of the first n nonnegative integers. This problem qualifies because it has an
infinite number of instances, one for each non negative integer n, and it is well-dlined.
In other words, one could not build a table in which the sum of the first n integers could
simply be looked up for each n, so instead a method for computing these values as needed
must be provided. Also, everyone would agree that a solution to this problem is any
procedure that comes up with the sum of the first n integers, so there is no question about
the meaning of this problem.

Solutions

In computer science, a solution to a problem is, as noted above, a method that will
compute the correct answer for any instance of that problem. We call such a solution
method an algorithm. To qualify as an algorithm, a proposed solution must:

1. be composed of simple steps that can be carried out "mechanically." (A program
written in a standard programming language satisfies this criteria.)

2. compute the correct answer for every instance of the problem. (This implies that the
algorithm cannot go on forever, but must halt after a finite number of steps with the
correct answer for each problem instance.)

101 lti

Example I

An algorithm for the problem of example lean be written in general terms, such as:
"Obtain a value for n. Sum each of the integers between 0 and n inclusive. Report the
total as the answer for this instance." Applying this algorithm to the problem instance
n = 4 yields the answer 10. For the problem instance a = 7, the answer is 28, and so
forth.

Often, algorithms are presented in a "pseudo programming language" rather than
English, because such a presentation is much more precise and closer in form to a
computer program.

Example 3

A pseudo programming language algorithm (with comments) corresponding to the
general algorithm of example 2 can be written as:

input n obtain a value for variable n
total 4-- 0 assign 0 to variable total
i 4-1 assign 1 to variable i
loop while i <_ n loop while i's value is less than

or equal to n's value
total 4 total + i add i to total
i 4-- i + 1 add 1 to i
endloop end of loop body

output total report the value in total

This algorithm will successfully compute the sum of the first n integers for any n greater
than or equal to zero.

A notion allied to that of algorithm is program. A program is the implementation of
an algorithm in some real programming language, ready to be run on a computer.

Example 4

A Pascal program that implements the algorithm of example 3 is given below:

program sumfirstn (input, output);
(this program computes the sum of the first n nonnegative
integers)

var
n, i, total: integer;

begin
(input a value for n}
wrIteln('Please type a nonnegative integer for n.');
read(n);

102

(keep inputting until a nonnegative integer is typed)
while n < 0 do begin

writeln('You entered a negative value for n.');
writeln('Please enter a nonnegative integer.);
read(n)
end;

(compute and print the sum of the first n integers)
total := 0;

:= 1;
while i <= n do begin

total := total + i;

end; (loop)
writeln('Ansver);
writeln(The sum of the first ', n:1, ' integers is: ',

total:1)
end.

In common discourse the words "algorithm" and "program" are often used inter-
changeably with no harm. As the previous two examples illustrate, however, there are
differences between a pseudo programming language algorithm and an implementation
of that algorithm as a program. The algorithm captures the idea of the method to be used
in the solution of a problem, whereas a program focuses on the specific details of getting
that solution to run on a computer. An algorithm also does not need to include checks
for invalid data, because as a mathematical object it is only defined over valid instances
(e.g., nonnegative integers) and is simply undefined elsewhere. In a real program,
however, such checks should be made for robustness, because a user can type in invalid
values which the program will attempt to evaluate. Finally, a good program should
include input and output statements that make it user-friendly, whereas this is
unnecessary in an algorithm.

Computers

A computer is simply a device that can carry out a program automatically. Although
there are many different types of computers available, their sole purpose is to
"mechanically" carry out the individual steps of a program in order to produce answers
to instances of the problem supplied. A computer is constructed with only a few
hardware instructions (usually called the computer's machine language) that it can
perform, such as add, subtract, multiply, divide, compare, and jump. In the final
analysis, programs intended to run on a particular computer mustbe presented in terms
of these simple instructions that are designed into the computer. (Programs called
compilers are available for translating standard programming languages, such as
Pascal, into a computer's machine language.)

Because a computer is a physical device, it obviously has limitations. For example,
the algorithm given in example 3 to compute the sum of the first n nonnegative integers
presents a solution that will work for any n greater than or equal to O. A computer that
executes the Pascal implementation of this algorithm given in example 4, however, will

103 11

only work for input values and computed values (i.e., sum) within the integer size
limitations of the computer.

The Science of Computing

The previous sections on problems, their solutions as algorithms and programs, and
computers that can execute programs provide a basis for understanding the kinds of
questions explored in the science of computing. These include the following:

limitations of Algorithms. As described earlier, algorithms must eventually be expressed
as programs that can run on a computer. Thus, the individual statements that can be
used in constructing an algorithm are ultimately dependent on the relatively small
number of instructions that a computer can carry out automatically. Given this
limitation, are there well-defined problems that have no solution (i.e., no algorithm)?
The answer is yes. There are many (an infinite number, actually) interesting problems
that have no solution. One well-known one is the halting problem. This problem can be
presented in this fashion:

A computing facility at a university has noticed that lots of time and computer
resources are wasted by students in the Pascal programming course, because
as novice programmers, these students often write programs that go into
infinite loops that waste computer time and other resources. Would it be
possible to write a programcall it HaltTesterthat screens student programs
for infinite loops before the programs are actually run on the computer (i.e.,
determine whether these programs will halt or not)? An instance of this
problem is an arbitrary Pascal program and the data that this program will be
run on this time. Clearly, there are an infinite number of instances of this
problem, one for each conceivable Pascal program and data for that program.
Also, the problem itself is well defined: an answer for a given instance (Pascal
program and its data) is, "Halts!" if that Pascal program would halt when
executed on the given data, and "Won't halt!" otherwise.

It can be proven that program HaltTester cannot be written. That is, there is no solution
(algorithm) for this problem. Thus, one of the objectives of computer science is to identify
problems that are unsolvable, so that time will not be wasted trying to develop
algorithms for them.

Limitations of Computers. It may appear from the previous section that the limitation on
the power of algorithms to solve problems may lie with the computers themselves. After
all, the statements that can be used for the individual steps in an algorithm are
ultimately limited by the instruction set of the target computer. Perhaps it would be
possible to design more powerful computers with richer instruction sets that allow
algorithms to be developed that solve problems that cannot be solved with current
technology. Unfortunately, this also appears unlikely. Just as multiplication can be
expressed in terms of addition, so can all of the other usual operations we can think of
be composed from just a small number of elementary operations. In fact, a cornerstone
of computer science theory is the ChurchTuring Thesis, which essentially states that
if a problem is unsolvable with algorithms and computers as we currently understand
them, it is unsolvable, period. Students of computer science need to be cognizant of this
important claim.

104 1 6

4

Classifying Algorithms. Having acknowledged the fact that there are unsolvable prob-
lems, computer scientists focus their attention on those that are solvable. For each
solvable problem, there are an infinite number ofalgorithms that solve the problem. Is
there a measure that can be applied to determine which of the algorithms is best? One
common measure is the amount of time required to execute an algorithm as a function
of the "size" of the problem instances input to the algorithm.

Example 5

Consider again the problem of computing the sum of the first n nonnegative
integers. The algorithm for this problem as given in example 3 is repeated below (this
time without comments). Here the statements are numbered for reference.

1 input n
2 total 4- 0
3 i E -1
4 loop while i 5 n
5 total 4- total +
6 i 4 + 1
7 endloop
8 output total

An instance of this problem is a specific valuefor n. If we count the number of statements
that will need to be executed in arriving at an answer for any value input for n, we see
that statements 1.3 will each be executed once, as will statement 8. Inside the loop,
statements 5-7 will be executed n times, depending on the value of n. Similarly, the loop
statement itself (statement 4) will be executed n times, plus one more time when it is
determined that i > n, at which point the loop is exited. Thus, 4n + 5 statements will need

to be executed for any input value of n in order to arrive at an answer: if n = 3, 17
statements will be executed in computing the sum of the first n integers; if n =1000, 4005

statements will be executed in computing the sum of the first n integers; and so forth.

The formula 4n + 5 in the above example is a measure of how complex the algorithm

is with respect to how much time is required to process the algorithm with different
values of n. We thus refer to the formula as a time complexity measure of the algorithm.

In this case we say that the given algorithm has linear time complexity, because the
formula of the number of statements that will be executed is a linear function of n, the
input value for the algorithm.

Example 6

A different algorithm that solves the same problem is given below. Here, the sum
of the first n integers is computed by starting with n in total and then adding n 1 to total,

n - 2 to total, and so on.

105

1 input n
2 total 4- n
3 i 4 n - 1
4 loop while i > 0
5 total 4 total +
6 14-i- 1
7 ndloop
8 output total

In this case, since total is initialized ton to start with, this eliminates one of the values
that needs to be added to total in the loop. A statement count analysis thus yields the
formula 4n + 1 for this algorithm (the four statements of the loop will be executed one
less time than in the algorithm of the previous example).

In comparing the algorithms of examples 5 and 6 we would have to say that the one
in example 6 is better in terms of its time complexity. However, both have linear time
complexity, and the differences between the two are so minuscule as to hardly consider.
For example, if n = 1000, the algorithm of example 5 will require that 4005 statements
be executed, whereas 4001 will be executed in the algorithm of example 6. The
differences pale as n gets larger, and, in fact, would be virtually undetectable if the
algorithms were implemented and run on a computer.

What would be of interest, however, is en algorithm that solves the same problem
but has a time complexity formula that is loss than linear.

Example 7

If someone were to attack the problem of computing the sum of the first n
nonnegative integers who had studied enough math, he or she might remember that
there is a closed form formula for this value:

sum of first n integers = n(n +l)
2

Thus, another algorithm for this problem is

1 input n
2 total 4- (n (i1 + 1)) / 2
3 output total

The time complexity formula for this algorithm is just 3, regardless of the size of the
value input for n.

The algorithm of example 7 has a time complexity formula that is constant, so we
say that the time complexity of that algorithm is constant. It is obviously much better
than the previous two algorithms covered.

It should be clear from the last three examples that the search for a "best" algorithm
(in terms of time complexity) for a given problem is an important focus of computer

106

11S

science. Students learning this kind of analysis can be helped by computer visualization
systems that clearly illustrate comparative time complexities of various algorithms for
a problem. Examples of such systems will be covered later.

Inherent Problem Difficulty. A closely related focus of computer science is the classification
of problems (rather than algorithms) according to their difficulty. For example, if we
could prove that the best algorithm for a particular problem has linear time complexity,
then we would say that the problem itself has linear time complexity. The problem of
computing the sum of the first n nonnegative integers thushas constant time complex-
ity, because the best algorithms for solving this problem have constant time complexity
(that's the best possible time complexity for a problem).

Are there problems that are "more difficult" (have higher time complexities) than
others? A little reflection tells us that this must surely be the case.

Example 8

We've all had experience looking up words in a dictionary, and we know that we
don't need to look at every word in the dictionary to find the one we're looking for. So,
although we could design an algorithm to solve this problem that did examine each word
in the dictionary (with linear time complexity over the number of words in the
dictionary), we know there must be a cleverer way. One way would be to open the
dictionary in the middle and check whether the desired word is in the first half or the
second half of the dictionary. We take whichever half the word is in and repeat this
process until the word is found. This leads to a log2n time complexitymuch better than
linear. On the other hand, we also know that as the dictionary gets larger, we somehow
are going to need to do more work, So we are unlikely to find a constant time algorithm
that requires the same time to look up words in adictionary regardless of the size of the

dictionary.
Now consider the problem of sorting a list of words into alphabetic order. Most

teachers have had this experience on a relatively small scale trying to rearrange tests
into alphabetic order by the last names of the students. Again, it is intuitively clear that,
unlike the problem of looking up words in a dictionary, this problem cannot be
accomplished without looking at each word. Also, it seems pretty clear that we can't get
by with just looking at each word once, because we will need to make comparisons
between words somehow. Indeed, the best algorithms for this problem can be shown to
have nelog2n time complexity, where n is the number of words to be rearranged.
(Readers interested in reading more about algorithms that have this time complexity
can find them in the chapter about sorting in any standard textbook on algorithms and
data structures, such as Weiss, 1992. For example, the mergesort and quicksort
algorithms have this time cc nplexity.)

As this example illustrates, problems themselves range in difficulty, and it is
important for the student of computer science to be able to analyzeor at least
recognizethe different time complexities of problems. Computer visualizations that
compare algorithms can underscore this fact, as described later in this chapter.

t
107

Computer Visua:ixation and Computer Science

As this section has demonstrated, the three areas of focus for a computer scientist
are problems, solutions (algorithms and programs), and computers. Actually, however,
problems are understood in the science of computing only through their algorithms (or
lack thereof), and computers are generally only of interest in that they are available for
carrying out the programs that implement the algorithms. So, in the final analysis,
algorithms are the overriding and primary concern of computer scientists. This has led
some scientists to name the core study of computer science algorithmics, thus implying
that the computer scientist is an algorithmician. A highly recommended book that
describes this core area of computer science in layman's terms is Algorithmics: The
Spirit of Computing (Havel, 1992).

Thus, any computer visualization system intended to elucidate the field of computer
science should focus on algorithmics, particularly illustrating how algorithms and
programs work and providing insight into the fundamental differences among algo
rithms as well as their time complexities. As described in the next sections, successful
visualization systems exist for these purposes.

Program Animation

Can computer visualization systems be used to teach and learn computer science?
Are there any such systems available? Do they work? The answer to the first and last
of these questions is a hearty "yes!" Availability is still an issue, but progress is being
made.

We begin in this section by describing the visualization systems we call program
animators. As discussed in the previous section, a program written in some program-
ming language (e.g., Pascal) can be thought of as the implementation of an algorithm.
Computer science students must become intimately familiar with programs aryl
programming in order to master the science. Program animators can greatly enhance
this process.

The Problem: Teaching and Learning Program Execution Dynamics

As those of us who have taught computer science have discovered, one primary
impediment to a clear grasp of programming and computer science is a lack of
understanding on the part of students new to computer science concerning the
relationship between a program and its execution. Program animation systems offer a
computerbased, visual remedy for this problem.

Consider again the Pascal program sumfirstn of example 4. That programin its
static, finite form as presented in the exampleis a solution to the problem of computing
the sum of the first n nonnegative integers. However, when the program is actually
applied to some explicit instance of the problem (say n = 5), it must be run on a computer.
At that point the program is no longer static, but dynamic. Program statements are
executed in order, variable values change, testa on variables are made that determine
how many times the loop will be iterated, and so forth. Many students have difficulty
making the connection between a (static) program and how that program behaves as it
is executed. Consequently, instructors are faced with the task of explaining this

108

correlation. It is safe to say that a student who never grasps program dynamics will in
turn never understand how programs solve problems and as a result never become an
effective programmer.

Just how does an instructor explain how a program works as it is executed? Those
who have tried find this to be a somewhat daunting experience. Traditional approaches
have the instructor first developing a program at the blackboard and then "playing
compute? on the program. Usually this proceeds as follows: The instructor represents
computer memory by writing down the names of the variables next to the program on
the board. Then, to illustrate program execution, he or she draws an arrow next to the
current line of the program being "executed" and discusses what will happen when the
computer actually executes that line. This may cause a variable value to change, so the
instructor erases the old value of the variable and replaces itwith its new value. Then
the arrow pointing to the current line of execution is erasedand redrawn at the next line
to be executed, and the process repeats.

Of course, this entire process is highly prone to human error, and recovering from
an error in front of a class of already bewildered students is nearly impossible, because
this requires redrawing the illustrations on the blackboard to represent some previous
state of program execution (which even the instructor may not be able to recall) and
proceeding from there. Even when the presentation progresses smoothly, answering
student questions, such as "I didn't catch those last few steps, could you please do them
again?" is just as difficult for the same reason. Finally, any student attempting to record
this presentation will go home with a hopeless jumble ofcrossed out values and scattered
notes that is virtually unintelligible: it is nearly impossible to capture the dynamics of
a program in execution in static textbook or note form.

The Solution: Computer Driven Program Animation Systems

Just think of the doors that would open if the task of explaining program execution
dynamics could be automated! Among the things one can envision are these:

1. An instructor could display the animation to an entire class on a wall screen using
au inexpensive overhead projection display device connected to a computer, thus
eliminating the need for hand animations at the blackboard.

2. Animations would be free of the errors inherent in a blackboard presentation of
program execution dynamics.

3. Questions about the last few steps of an animation could be answered simply by
backing the animator up and repeating those steps as often as necessary without
error.

4. Students could concentrate on the animation without taking notes, because they
could be given the same animated program to study on a computer at their leisure.

5. In fact, an entire library of animated programs could be provided on a disk with the
animation system so that students could explore any number of programs on their
own.

6. Stretching imagination even further, a complete textbook or programming lab
manual could be available on a disk (for example, in hypercard form) in which textual
discussions could acelmpany animated programs.

109

The ramifications of such an animation system are difficult to estimate. Instructors
would be able to present many more examples in class, students could perform
repeatable experiments on assigned programs, the visual animations would encourage
students to explore programs on their own, and the list goes on.

Example 9

During an animation of program sum firstn of example 4, the computer video screen
might be organized as shown below (with the use of high resolution graphics and
windows, the actual display would generally be much more elaborate).

Proaram sumfirstn

total := 0;
i := 1;
while i <= n do begin

total := total + i;
i + 1
end; (loop)

vaitein(`Answer: ');

Memory

n = 10
i = 4
total = 8

Input Area Statement Count

10

Output Area

Please type a nonnegative integer for n

27

In this example, which portrays a snapshot of the program after execution has been
in progress for some time, the animation screen is organized into five sectional. In the
program section, just a portion of the program where execution is currently occurring
is displayed (notice that only a small, relevant section of the program will fit here at any
one time; this portion will be scrolled as necessary). The current line to be executed as
the animation progresses is denoted by the ?--=> arrow. In the memory section all of the
program variables are listed with their current values; at the beginning of program
execution, these variables would have no values, which would be indicated by printing
a ? symbol in place of the values. The input area is where the user can type values that
are needed when input is requested by the program. In this example, the user has typed
a 10 in response to an input (read) statement executed earlier in the program,
indicating that the program should compute the sum of the first 10 nonnegative
integers. Notice that this value (10) has been stored in variable n, as shown in the
memory section. The output area lists the messages that are printed by the output
(writeln) statements of the program. In the example, execution of an earlier writeln

110 1

statement has caused the message "Please type a nonnegative integer for n" to appear.
One can envision an instructor presenting this example to a class by projecting this

image on a wall screen. The animation has progressed to the point indicated by the ?--=>
arrow. The current values of the variables are n = 10, i = 4, and total = 6, meaning that
the loop has been executed for i = 1, 2, and 3, and is now in the 4th iteration. Thus, total
contains 0+ 1 + 2 + 3, or 6, at present. At this point the instructor can ask the class, "What
will happen when this statement is executed (the one pointed to by the arrow)?"
The presence of the question mark on the arrow signifies that it is time to ask this
question. The students will hopefully be able to recognize that as a result of executing
this statement,

? => total := total + i;

the memory value for total will change to 10the result of adding total's value (6) to i's
value (4). After sufficient time has elapsed to give the students a chance to guess what
would happen, the instructor can push the enter key on the computer's keyboard to
cause the animatcs to execute the statement in question. The result will be that the
question mark will be removed from the arrow, signifying that the statement has been

executed, total's value will change to 10 in the memory section, and 1 will be added to
the statement count, changing it to 28. Thus, the screen will now look like:

Prooram sumfirstn

total := 0;
I := 1;
while I <= n do begin

==> total := total + I;
i := i + 1
end; (loop}

wrfteln('Answer);

Memory

n = 10
i =4
total = 10

Input Area Statement Count

10 28

Output Area

Please type a nonnegative integer for n

At this point the instructor can ask the question, "Which statement should be
executed next?" In this case the answer is simple enough: the statement immediately
'ollowing the one just executed (pointed to now by the => arrow) should be executed.
Pressing the enter key once more will cause the animator to move the arrow to that
statement, again with the ? symbol displayed, yielding:

I 1 1

program sumfirstn Memory

total := 0;
i := 1;
while i <= n do begin

total := total + i;
?==> i := i + 1

end; (loop)
writeln('Answer:');

Inout Area

10

Output Area

Please type a nonnegative integer for n

n = 10
i =4
total = 10

Statement Count

28

Except for moving the arrow, the animator changes nothing on the display, allowing the
instructor to repeat the process described earlier.

The purpose for having the arrow displayed twice at the same statement, once as
?=> before execution and then as => after execution is best explained by another
example.

Example 10

Suppose that the animation were at the point illustrated below, where i now has
value 11 and total = 55 (just the program and memory portions of the screen are shown):

total := 0;
I := 1;
while i <= n do begin

total := total + i;
i:=I+1
end; (loop)

writelneAnswerl;

n = 10
I = 11
total = 55

This time when the instructor asks what will happen when the marked statement ifi
executed, students should recognize that i is not lees than or equal ton. When the enter
key is pressed, this is indicated by the animator by replacing the ? with an F (for FALSE)
on the arrow; that is, i <= n is now false:

112

l2'4

total := 0;
i 1;

F => while i <= n do begin
total := total + i;
i := i + 1
end; (loop}

writelnCAnswer:');

n = 10
= 11

total = 55

Now, when the instructor asks where execution should continue, the students
should recognize that since the loop test is false, the next statement to be executed
should be the one immediately following the loop. The animator will indicate this when
the enter key is pressed once more:

?

total := 0;
i .1g 1 ,
while i <= n do begin

total := total + i;
i := i + 1
end; (loop)

==> writein('Answer);

n = 10
i = 11
total = 55

Although it is extremely difficult to portray the effects of program dynamics in a
book like this, the educational benefits of a program animation system should be readily
apparent from this example. Many other features, such as the ability to reverse the
animation in response to student questions, various possibilities for skipping over
statements that are not of interest, allowing the animation to proceed automatically
when only statement counts are desired, and many others, coupled with the fact that
students can use the animation system on their own after class, make this tool
indispensable for teaching and learning computer science and programming.

Just what are the prospects for such a program animation system? Excellent!
Availability?...well, many already exist, albeit not always in a form entirely suited to
beginning students. Some exist as interactive debuggers and are part of most modern
programming language systems. Other systems, often referred to as visible program-
ming systems, are also available; these are better suited to teaching and learning
programming but don't include many of the desired educational capabilities described
above. (It should be noted here that the term "visual programming" is also used in the
literature. It refers to a more general view of programming with visual aids and is not
restricted to describing only program animation. The term we usevisible program-
ming systemis used only to describe facets of program animation.) Fully developed

113 1

educational program animators with all of the envisioned features presently exist only
in test form or as ongoing projects, but are likely to be available soon. (As is true of many
good educational ideas, the technology for the implementation of educational program
animators is certainly available; what has been lacking are the resources and incentives
to bring such a product to market.)

Let's examine some of these systems.

Educational Program Animators

To be successful, an educational program animator must not only incorporate the
features described in the previous section, it must also be extremely easy to use. Any
system that requires substantial set-up time by teachers (who may be new to computer
science to start with) or that demands that users (teachers and students) learn a complex
interface will fail.

As already noted, animators that combine the many desired educational features
with absolute ease of use are not yet available. However, a pilot system designed by the
author with many of these features has been in use at Montana State University for
some time now. This system is called DYNAMOD (for DYNamic Algorithm MODerator),
and has been described most recently in Ross (1991a). The success of DYNAMOD with
both instructors and students of introductory computer science courses has led to a new
project supported by the National Science Foundation (Ross, 1991b) for development of
a greatly enhanced system called DYNALAB (for DYNAmic LABoratory). DYNALAB
will contain all of the features on the wish list of the previous section, and it will support
experimentation in formal computer science laboratories. DYNALAB will be useful in
introductory computer science courses at both pre-college and college levels.

To provide a tantalizing taste of what an educational program animator can do, a
description of DYNALAB is given below. Although DYNALAB is not yet finished, it will
be presented as if it were to facilitate the discussion.

DYNALAB. Suppose that accompanying the textbook (or perhaps even replacing the
textbook) for an introductory computer science laboratory course there is a standard 3.6
inch disk for either IBM or Macintosh personal computers that contains all of the
supporting materials for the course. In particular, the disk contains the following:

1. A comprehensive library of Pascal programs, ready to be run in animated fashion on
a computer video screen.

2. A library browser that allows the user to meander through the library, looking up
programs by the topics they illustrate (e.g., loops, recursion, searching, sorting, time
complexity, etc.).

3. An animation system that allows the user to retrieve any program in the library and
run that program in visual, animated form on the computer vidvo screen with
minimal and very easy user intervention.

4. A library maintenance routine that allows an instructor to enter more example
programs into the library or to modify existing programs.

5. A student section to the library, where the student can enter selfdesigned programs
(or other library programs that have been modified) for possible execution under the
animator.

114

1 6

6. A complete set of laboratory experiments that can beperformed on programs in the
library.

7. A user-friendly interface that provides access to all of these features, including
context-sensitive help information that can be accessed from any place in the system.

This is a picture of the DYNALAB system. To see how DYNALAB can be used in a
course, a few examples are given below. These scarcely scratch the surface of applica-
tions of a program animator in teaching and learning computer science and program.
ming, but they should be enough to whet the appetite.

Understanding Programming Language Constructs. As illustrated in examples 9 and 10,
every programming language construct is more clearly explained by way of
DYNALABfrom simple assignments statements, to Wand case selection statements,
to loops, to procedure and function calls, to parameterpassing, and to recursion. One
particular experience the author had in using the DYNAMOD pilot animator for the
first time graphically illustrates this. In a second-quarter class of programming
students who had already completed a few programs using recursion, an animated
example of a recursive procedure was being projected on the screen. The students were
spellbound, and from the back of the class of about a hundred, a student fairly shouted,
"So that's how recursion works!"

Determining Program Execution Paths. Most programs include selection statements Wand
case statements, for example). Depending on the data being processed, different paths
(selections) will be followed as the program is executed. Having the students come up
with different data values that will cause every path through the program to be executed
is a good exercise to help them clearly grasp the dynamic workings of the various
selection statements. Since the students all have access to the same library with the
same animated programs, they can do such an exercise without first having to write and
debug the program of the assignment.

Modifying Existing Programs. Since all students have a copy of the animation system, they
can be required to modify aparticular program in the library as an assignment. This can
be as simple as changing an if statement to an equivalent case statement to as complex
as incorporating new procedures and functions.

Empirically Validating TInto Complexity. Th . previous twoexamples are primarily oriented
towards teaching and learning programming. Exercises intended to elucidate some of
the fundamental issues of the science of computing are also possible. For example, some
programs are difficult to analyze for their time complexity vcialytically. Such a program
can be assigned from the libraryfor which the students are to verify the time complexity
empirically. This requires that they determine a number of different appropriate input
sets of varying sizes, run the program on each of the input sets, record the statement
counts for each, and then analyze the results (perhaps in graph form) to determine what
the time complexity is. This kind of assignment has proved to be extremely effective in
teaching and learning about time complexity. Again, since all students have the same,
correct programs to work with, their experiments are repeatable and easy to verify, as

any good science experiment intended for the classroom should be.

115 1

Library Customisation. As new experiments or examples are envisioned, these can be
easily incorporated into the library and new diskettes distributed to the students,
making the DYNALAB system adaptable to different situations and teaching/learning
styles.

Program Review. Finally, it should be noted that just observing ones own program in
action is a rewarding and educational experience. Students who have access to an
animator for running their programs can't resibi watching them run under the
animator. This seems to be a universal observation: what artisan doesn't enjoy
examining his or her creation in depth and from new and different angles?

In summary, the advent of easy-touse educational program animators promises to
make the teaching and learning of programming and introductory computer science
fundamentals much more convenient and easy. Of particular interest to teachers is the
fact that an educational program animator like DYNALAB is a complete resource: all
programs, textual material, exercises, and assignments necessary for supporting a
course in introductory programming and computer science are incorporated into the
system on a diskette. If teachers desire to install their own programs and exercises, they
may, but otherwise they are free to concentrate on teaching rather than program and
assignment development. Students, in turn, will find the use of the animator to be
straightforward, requiring almost no training in the use of the system. These are among
the features that distinguish educational program animators from visible programming
systems and interactive debuggers, described next.

Interactive Debuggers

Interactive debuggers are the most common type of program animation systems. All
good programming language systems come with an interactive debugger, because as a
tool for ferreting out errors in a program, a good debugger is indispensable. Even correct
programs, when examined through the animation of an interactive debugger, can be
better understood and perhaps improved.

Interactive debuggers provide program animations similar to those described in the
previous section. The primary difference between interactive debuggers and educa-
tional program animators is that the animations are not automatic in a debugger. The
user is responsible for most aspects of the animation: the variables to be displayed
during the animation must be chosen specifically, a complex (for beginners) interface for
driving the animation must be learned, and various options for configuring the
animation must be mastered. The reason for this complexity is simple: interactive
debuggers are for professional programmers, those who understand programs and
programming well, and who are trying to uncover bugs or analyze program behavior for
improvements; the tool must be up to the task. Among the common features of an
interactive debugger are these.

groskpoints. A code, called a breakpoint, can be inserted into a program at an
arbitrary position. The program will execute at full speed until reaching this point
and then pause. At this point the user can step through the program a line at a time
as the animation unfolds on the screen. The purpose of a breakpoint is, of course, to
allow examination of only sections of code that contain errors nr are otherwise of
interest.

1 4 3

Memory Observation. The user can specify a set of variables and expressions that are
of interest for observation. The selected variables and their values will be displayed
by the animator during the course of a session.

Reverse Execution. The user can request that execution reverse at any point, thus
allowing review of a section of code numerous times without restarting the program
(only a few of the best debuggers have this feature).

Profiling. Statistics on how often a specified line, section of code, or procedure is
executed can be generated, along with numerous other statistics that characterize
the execution of a program. These can aid in program time and space complexity
analysis.

In summary, a fullfeatured interactive debugger brings powerful tools to bear on
program debugging and analysis. These tools are appropriate for advanced students,
but not beginners just learning programming. Teachers can certainly use an interactive
debugger to illustrate program dynamics in class quite effectively. However, designing,
writing, testing, and presenting the programs are all the responsibility of the teacher,
unlike the case for an educational program animator, where complete programs are
already provided. Also, since interactive debuggers are designed for debugging rather
than teaching, a number of nice features for teaching are lacking. A simple example is
the pause feature described in the provious section. Instead of markers (?=--> and =-->)
that pause at the same statement both before and after execution of a statement to allow
consideration of both what will happen when the statement is executed and then where
control will go next, a statement is executed and control passes to the next statement
in one indistinguishable move. So, while interactive debuggers can be pressed into
service for program animation, they are not as useful in introductory courses as an
educational program animator.

Visible Programming Systems

Visible programming systems bear mentioning that they are a slight variation on
interactive debuggers. Aimed more at beginning programmers, visible programming
systems allow a program to be run in "visible mode." In our terminology this just means
that program animation can be turned on when a program is executed, and a display
similar to those given in the section "Educational Program Animators" in this chapter
appears on the screen. Visible mode is generally automatic; the user does not need to
orchestrate the animation to such a degree as is required of professional debuggers.
Again the reason for this is that a visible programming system is aimed more at those
learning programming than advanced programmers, whereas the users of interactive
debuggers are generally professionalor at least advancedprogrammers. A good
example of a visible programming system is Dr. Pascal (1989).

Beyond program animation, visible programming systems do not have many of the
pedagogical features of educational program animators. For example, they do not come
with libraries of typical programs animated for class use, they generally ignore time
complexity measures, and they do not imcorporate exercises and experiments. However,

they certainly represent a vast improvement over non-animated systems for teaching
and learning programming and should be used in the absence of full-featured education-
al program animators.

History and Sources of Program Animation Systems

The entire topic of visualization with respect to programming is a large one. Good
references for an overview are Shu (1989), Chang (1990), Glinert (1990), and Ichikawa
et al. (1990) (the latter two include papers on algorithm animation). Program animation
specifically has intrigued programmers from the outset, although it was not until video
screens became available that animations reached their full potential. The early
systems were, not too surprisingly, envisioned as debugging aids for working program-
mers. Early references to such systems include Evans and Darley (1966), Balzer (1969),
Barron (1971), and Cuff (1972).

Educational program animators began to receive attention in the literature in the
early 1980s, including Rezvani and Ross (1981), Ross (1982), Ross (1983), and Hille and
Higginbotham (1983). Algorithm animation, the subject of the next section, was also
receiving more interest during this period, and a slight confusion of terminology exists
in the literature; what we refer to in this chapter as algorithm animation was often
called program animation. It is usually immediately clear from the context of the paper
which type of animation is intended, however.

As educational program animators (e.g., Ross 1991a, 1991b; Mayerhofer & de
Lucena, 1992) have not yet appeared as commercial ventures, they are difficult to
obtain, orbeing pilot projectsare not yet as convenient to use as they could be. Most,
like the DYNALAB system described previously, are ongoing research and development
projects at universities and do not enjoy the wide exposure and availability of a
commercial project. Nonetheless they hold great promise for enhancing introductory
computer science courses and should soon become widely available. In the meantime,
visible programming systems, such as Dr. Pascal (1989), can be used to great effect in
introductory programming courses, both by teachers, who can display animations on
wall screens during class discussions, and by students, who can watch their own
programs in animated form. (Dr. Pascal runs on IBM PCs.) With a bit more effort, the
debuggers that come with most programming language systems can be pressed into use.
Examples include the debugger that comes with Turbo Pascal for IBM PCs and the
Think Pascal system for Macintoshes. Others with similar features are available.

Algorithm Animation

Algorithm animators provide a differentbut complementaryvisualization tech-
nique for computer science education. Instead of animating the program that imple-
ments an algorithm, the algorithm itself is animated. In other words, it's the concept
that is animated, not the statements of some program.This is explained in the next
section.

Making Algorithms Come to Life

The ideas behind algorithm animation can best be explained by example.

3

Example 11

Consider the problem of sorting. Pictorially, the values to be sorted can be
represented on a computer screen by bars of various heights (the taller the bar, the
larger the value represented). Initially, in representing a list ofvalues in random order,
the bars themselves could be pictured on the screen in random order, as shown in Figure 1.

I ,ill 11111 .1111111,111.
Figure 1. Visualizing a random assortment of numbers

The purpose of sorting is to rearrange a set of values so that they appear in, say,
ascending order. In the above visualization, this would mean that the bars should be
rearranged to be displayed from shortest to tallest from left to right across the screen.
Notice that the bars are only representative of the actualvalues that a sorting algorithm
might be applied to. The actual values could be numbers, names, or even entire records
of information. There are many different sorting algorithms, and although each would
achieve the same objective of rearranging the values into ascending order, each would
do this through a different strategy. The animation of an algorithm should clearly
demonstrate the strategy of the algorithm.

Here is one possible algorithm for sorting, called insertion sort: Start with the first
value (bar) in the list and proceed through the list (fromleft to right in the picture). For
each new bar encountered, compare it to the previous bar. If the new bar is shorter,
switch the two bars. Continue this process of comparing this new bar with the previous
bar and switching the two until the new bar has arrived at its proper position in the list
(the bar to its left is shorter).

Suppose that the first five bars in the list have been handled this way already and
we are about to look at the sixth bar. At this point the visualization should look as shown
in Figure 2. The first five bars of the list are already in ascending order as we are about
to begin processing the sixth bar. The sixth bar is marked differently to denote that it
is the one currently being examined.

119

1.11111111 i

Figure 2. Examination of the sixth bar

Now compare the new bar (the one marked differently) with the one to its left. Since
the marked bar is shorter, the two bars are switched, yielding Figure 3.

,111 111111.11111111111.

Figure 3. Result after switching the fifth and sixth bars

Again, the marked bar is compared with the one to its left, and since the marked bar
is shorter, these two are switched as well, resulting in Figure 4.

120

132

,11 11111 1

Figure 4. Result after switcing the fourth and fifth bars

This process continues until the marked bar arrives at the second position, where

It is no longer shorter than the bar to its immediate left, as shown in Figure 5.

111111 I III Iill

Figure 5. Final result of moving the marked bar left

At this point, the first six bars are in ascending order, so the seventh bar is marked

as shown in Figure 6 as the new one to be examined, and the process repeats.

11111 Ilid .1101111iIII
Figure 6. Examination of the seventh bar

As can be seen, this algorithm will eventually lead to the entire set of bars being
sorted into ascending order by height. An algorithm animator would allow a user to
watch the sorting process one step at a time, controlled by keystrokes, or perhaps
continuously without intervention. In any case, this method of sorting would become
graphically apparent to the viewer. The use of colors for the bars as well as options to
speed up or slow down the animation would greatly enhance the presentation.

As this example illustrates, a visual animation of an algorithm can lead to a clear
understanding of the algorithm. As a tool for teaching and learning about algorithms,
algorithm animators are indispensable. (Ifyou aren't already convinced, try describing
the actions of an algorithm on a blackboard or in textbook form as in example 11 above';
you'll soon become a believer!)

Comparing Algorithms

In section 2 it was pointed out that one of the key issues of computer science is the
classification of problems and algorithms according to their time complexities (how
efficient they are). Algorithm animators provide teachers and students an excellent
opportunity to compare algorithms for efficiency, thus reinforcing this important aspect
of the science. They also allow for scientific experimentation in algorithm analysis.

The problem of sorting is a particularly good example, because there are so many
different sorting algorithms. In the classic textbook, Sorting and Searching (Knuth
1973), twentyfive different sorting algorithms are discussed, which only represent a
fraction of the methods devised by that time. While many sorting methods that have
been developed are now obsolete (other, more efficient methods have been discovered),
many others fulfill a useful role. How can students visualize the differences among so
many choices, and how can they be convinced that some are better than others?
Algorithm animators provide an effective answer.

11 4

Example 12

Consider the problem of comparing four different sorting algorithms. An algorithm
animator could open up four different windows on the screen, each with the same set
of bars in the same random order to start with. Each algorithm will eventually sort the
bars into ascending order, and so each window will also end up with the same picture
as well. In between, however, each algorithm will rearrange the bars individually in
completely different manners, so the pictures will be quite different.

The animator can be set to cycle through the windows, doing just oneoperation in
each of the four windows in succession. The result will be that the viewer can see how
each algorithm is progressing compared to the others. Good algorithms will finish the
sorting process sooner than the less efficient ones, clearly demonstrating their benefits.

The user can study the effects of algorithms on different data sets to see what the
results are. For example, if the list of values to be sorted happens to already be in order,
how do different sorting strategies compare? Some that are very good on randomly
ordered values, such as the quicksort algorithm, do very poorly if the initial list is
already in order or is in reverse order. On the other hand, the inseiion sort algorithm
given in example 11 is not nearly as efficient as the quicksort algorithm on randomly
ordered lists, but is much faster on a list that is already in order. This ability to
experiment with various algorithms within the framework of an animation system
greatly enhances the learning process.

History and Sources of Algorithm Animation

References to algorithm animation indicate that this idea was being explored at
least by the late 1960e. In a nice paper that summarizes theseactivities (Baecker, 1975),
Baecker describes the approaches taken. As there were no personal computers and
graphics terminals available, movie films were developed that animated algorithms.
The work required to develop such a film was apparently quite incredible, and of course,
there was no way for the viewer to interact or experimentwith the animation. One result
of these efforts was the film Sorting Out Sorting (Baecker & Sherman, 1981) that
animated various sorting algorithms for comparison. These early researchers recog-
nized that the technology for developing interactive, computer-based animations was
just around the corner, and not many films were produced.

Since the mid 1980s a number of computer-driven algorithm animators have been
developed. These include the work of Marc Brown (Brown 1988a, 1988b, 1991; Brown
& Hershberge,,1991; Brown, Meyrowitz, & van Dam, 1983; Brown & Sedgewick, 1984,
1985), Robert Duisberg (1986, 1988), Esa Helttula et al. (1989), John Stasko (1990), and
Thomas Naps (1990). International interest in both program and algorithm animation
has flourished, as well; the Algorithm Simulation and Animation Environment (ASA)
under development in Brazil is indicative (Mayerhofer and de Lucena 1992). Others
have designed similar, more limited algorithm animators that have not been published
widely. Probably of most interest to teachers of introductory computer science courses

are the following algorithm animators: Balsa II (Brown, 1988a) which runs on Macin-
tosh computers; Tango and XTango (Stasko, 1990), which run on workstations (the
latter requiring the X-window system); and GAIGS (Naps, 1990), which runs on IBM
PCs. Other systems also exist, as mentioned, but these seem tobe the most advanced
and current.

123

Algorithm animators specifically designed for education are in a more advanced
state than are similar program animators, but they both suffer from a common problem:
availability. As far as the author knows, none of these systems is available commercially
or as part of an instructional package. Most are the result of research done in teaching
and learning computer science at universities and thus exist primarily as test projects.
Therefore, software and technical supportnot to mention coursewareare likely to be
lacking. Nonetheless, algorithm animators can be used to great effect in the classroom,
and it should be only a matter of time before they find their way into integrated course
materials.

A final note on algorithm animators is this: installing new animations of different
algorithms into the system can be quite complex. From the user's perspective, viewing
animations that are already included is easy; trying to devise a new animation (e.g.,
from the perspective of a teacher who would like to demonstrate something new) is the
difficult part. What kinds of illustrations would graphically represent the algorithm and
its actions best? How can these illustrations be animated, perhaps with sound and color
to achieve the greatest success? These are the challenging questions to answer in
developing successful algorithm visualizations. However, this should not deter teachers
from using algorithm animators, as most come with a sufficient number of relevant
animated algorithms for most introductory computer science courses.

Other Prospects for Computer Science Visualization

Computer generated animations and visualizations can be very effective in specific
topic areas of computer science as well. How jobs are processed in a multiprogramming
operating system, how the stack progresses during compiling, how a network handles
packets, how a Turing machine or finite state automaton works, how the instruction
fetch and execute cycle of a computer operates in the presence of interrupts, and so forth
are all good prospects for visualization (indeed, some have been tried). In this chapter
we have described just those visualization systems that are at the core of computer
science, namely algorithmics.

Work continues on visualization techniques for this core area of computer science.
In an interesting paper entitled "Color and Sound in Algorithm Animation" (Brown &
Hershberger, 1991) work is described that incorporates color and sound into an
algorithm animation system. Work also progresses on making algorithm animators
more general and easier for the user to incorporate new animations. We can expect that
as program and algorithm animation systeme mature, we will find more of them
incorporated into courseware available to introductory secondary school and university
computer science courses.

Summary

As described in this chapter, scientific visualization techniques that support
education in the fundamentals of computer sciencenamely algorithmicsfall into two
main cateviries: program animation and algorithm animation. Among the program
animation variety are educational program animators, visible programming systems,
and interactive debuggers. Interactive debuggers can be used for animating programs

for teaching and learning introductory computer science and programming, but they
are tools designed for the programmer rather than the educator and beginning student.
Substantial effort is required on the part of the teacher to develop programs, exercises,
experiments, and textual material in support of a course if one of these types of systems
is employed. In addition, the student must master a rather complex interface to truly
benefit from using one of these systems. Visible programming systems are similar to
interactive debuggers in their orientation towards program debugging. They are,
however, generally much easier to use and more readily adaptable to assignments and
discussions involving beginning students.

Educational program animators, on the other hand, provide a complete resource:
programs, exercises, experiments, and textual material are all included within the
framework of an easy.touse program animation system. The teacher need only design
the course around the animator without being required to expend the considerable effort
necessary to develop programs and accompanying assignments (as would be the case if
an interactive debugger or visible programming system were used). Educational
program animators do, however, allow the teacher to include a few favorite exercises as
desired. Students benefit from having access to the same resources as the instructor,
providing consistent assignments and experiments that are repeatable. In addition, the
user interface is designed to be useable by the utter novice, making the animations
accessible to all students.

Algorithm animators go a step beyond program animators by visualizing the ideas
behind the algorithms in some kind of analogous, graphical form. Animating an
algorithm requires a lot of effort and careful design, whereas program animation occurs
automatically. Program animation and algorithm animation complement each other
well and will eventually be combined into comprehensive computer science visual
education packages.

For the computer science teacher of today, educational program end algorithm
animators offer a quantum leap in teaching and learning capabilities. In fact, one could

even say that science classrooms in general are going to be remodelled to include
windows to many breathtaking views of science never seen before. The windows will be
personal computers and workstations, and the views will be computergenerated
visualizations of scientific principles and objects. One can only hope that these v sews will

bring students to see the exciting possibilities in science and mathematics and inspire
more of them to aspire to careers in these fields.

References

Baecker, R. (1975). Two systems which produce animated representations of the
execution of computer programs. ACM SIGCSE Bulletin, 7(1), 158.167.

Baecker, R., & Sherman, D. (1981). Sorting out sorting . University of Toronto Computer
Media Centre, 121 St. George St., Toronto, Ontario, M5S 1A1.

Balzer, R. (1969). EXDAMSExtendable Ddbugging and monitoring system. AFIPS
Conference Proceedings, 34, 567.580.

Barron, D. (1971). Approaches to conversational fortran. The Computer Journal, 11(2),
123.127.

125

Brown, M., Meyrowitz, N., & van Dam, A. (1983). Personal computer networks and
graphical animatio..: Rationale and practice for education. ACM SIGCSE Bulletin,
15(0,296-307.

Brown, M., & Sedgewick, R. (1984). A system for algorithm animation. Computer
Graphics, 18(3),177.186.

Brown, M., & Sedgewick, R. (1985). Techniques for algorithm animation. IEEE
Software, 2(0,28-39.

Brown, M. (1988a). Algorithm animation. Cambridge, MA: The MIT Press.
Brown, M. (1988b). Exploring algorithms using Balsa-II. Computer, 21(5),14-36.
Brown, M. (1991). Zeus: A system for algorithm animation. Proceedings of the 1991

Workshop on Visual Languages.
Brown, M., & Hershberger, J. (1991). Color and sound in algorithm animation

(Research Report 76a). DEC Systems Research Center, 130 Lytton Avenue, Palo
Alto, CA 94301.

Chang, S. (Ed.). (1990). Visual languages and visual programming. New York: Plenum
Press.

Cuff, R. (1972). A conversational compiler for full PL/I. The Computer Journal, 15(2),
99.104.

Denning, P., Comer, D., Gries, D., Mulder, M., Tucker, A., Turner, A., & Young, P.
(1989). Computing as a discipline. Communications of the ACM, 32(1), 9.23.

Dr. Pascal. (1989). Dr. Pascal user manual. A Pascal programming language system
from Visible Software, P.O. Box 7788, Princeton, NJ.

Du isberg, R. (1986). Animated graphical interfaces using temporal constraints. Human
Factors in Computing Systems: CIII '86 Conference Proceedings, 131.136.

Duisberg, R. (1988). Animation using temporal constraints: An overview of the animus
system. Human-Computer Interaction 3, 275.307.

Evans, T., & Darley, D. (1966). On-line debugging techniques: A survey. AF7PS
Conference Proceedings, 29, 37.50.

Glinert, E., (Ed.). (1990). Visual programming environments: Applications and issues.
Los Alamitos, CA: IEEE Computer Society Press.

Harel, D. (1992). Algorithmics: The spirit of computing (2nd ed.). Menlo Park, CA:
Addison-Wesley.

Hartmanis, J., & Lin, H. (Eds.). (1992). Computing the future: A broader agenda for
computer science and engineering. National Academy Press.

Helttula, E., Hyrskykari, A., & Raiha, K. (1989). Graphical specification of algorithm
animation with ALLADIN. Proceedings of the 22nd Annual Hawaii International
Conference on System Sciences, 11, 892-901.

Hills, R., & Higginbottom, T. (1983). A system for visible execution of pascal programs.
The Australian Computer Journal, 15(2), 76.77.

Ichikawa, T., Jungert, E., & Korfhage, R. (1990). Visual languages and applications.
New York: Plenum Press.

Knuth, D. (1973). Sorting and searching. Menlo Park, CA: Addison-Wesley.
Merritt, S. (Moderator). (1992). ACM model high school computer science curriculum

(panel discussion). Twenty-third SIGCSE technical symposium on computer sci-
ence education. SIGCSE Bulletin, 24(1), 323.

Mayerhofer, M., & de Lucena, C. (1992). Design of an agorithm simulation and
animation environment (ASA). SIGCSE Bulletin, 24(2),7-14.

126

Naps, T. (1990), GAIGS for the PC: User's manual. Thomas L. Naps, Lawrence
University, Appleton, WI 54912.

Rezvani, S., & Roes, R. A dynamic library of interactive programming language
examples (Tech. Rep. CS-81-073). Computer Science Department, Washington
State University, Pullman, Washington 99164.

Ross, R. (1982). Teaching programming to the deaf. ACM SIGCAPH Newsk tier, 30,18-

24.
Ross, R. (1983, Fall). LOPLE: A dynamic library of programming language examples.

ACM SIGCUE Bulletin, 27-31.
Ross, R. (1991a). Experience with the DYNAMOD program animator. Proceedings of

the Twenty-Second Technical Symposium on Computer Science Education, SIGCSE
Bulletin, 23(1), 35-42.

Ross, R. (199 lb). A dynamic computer science laboratory. Project funded by the National
Science Foundation, NSF Grant Number USE-9150298.

Shu, N. (1989). Visual programming: Perspectives and approaches. IBM Systems
Journal, 28(4), 525-546

Stasko, J. (1990). Tango: A framework and system for algorithm animation. IEEE
Computer, 23(9), 27-39.

Taylor, H., & Martin, C. (1992). The impact of new accreditation and certification
standards for secondary computer science teachers on university computer science
departments. Twenty-Third SIGCSE Technical Symposium on Computer Science
Education SIGCSE Bulletin, 24(1), 235-239.

Tucker, A. (Ed.). (1991). Computing curricula 1991. Report of the ACM/IEEE-CS Joint
Curriculum Task Force. ACM Press, ACM order number 201910.

Weiss, M. (1992). Data structures and algorithm analysis. The Benjamin Cummings
Publishing Company.

Acknowledgemun: The DYNALAB project described in this paper is based in part upon work
supported by the National Science Foundation under Grant No. USE-9150298. The Government
has certain rights in this material. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the

National Science Foundation.

127

Chapter 7

Getting Started With Supercomputing:
An Approach for High School Students

DONALD W. HYATT

Because of remarkable advances in computer technology, modern scientists have
a new problem solving tool, a supercomputer. Supercomputers supported by high
powered graphics work tations have become extremely valuable resources for a wide
range of current scientific investigations. High performance computing will become
increasingly more important to many scientific and engineering disciplines, so it is
important for educators to prepare future generations to be ready for that growing
demand.

Supercomputer access was originally reserved for graduate students and research
scientists. Now, however, this power is available to high school students through a
national competition called Super Quest. This contest is an exciting educational initia
tive promoted by many of the national supercomputing centers including the Cornell
Theory Center, the National Center for SupercomputingApplications, and the Univer-

sity of Alabama/Alabama Supercomputing Network. It is jointly sponsored by the
National Science Foundation and various private corporations. To be ready for the
technical expertise that will be required in the next century, both students and teachers
must learn to use this emerging technology. As a teacher who has been involved with
SuperQuest since the first competition in 1988, the author hopes that the following
materials will be helpful to other educators who want to get started with
supercomputing.

Background

Throughout history, scientists have been searching for the fundamental laws which

govern our universe. Dr. Clifford N. Arnold (1988), former manager of Computational

129

Research at ETA Systems, pointed out to participants of the first SuperQu est that there
are now essentially four fundamental methods of scientific research.

Until recently, only three of these techniques had been used for most scientific
investigations. The first method, observational science, is where researchers study
some situation or phenomenon, and then carefully document their discoveries. Some
examples of observational science include studying the social behavior of gorillas in
various habitats, or mapping the geological formations in the Grand Caryl 'In.

The second method is referred to as experimental science. With this technique, an
experiment is designed that will provide some insight into a basic scientific principle.
It is important in experimental science to have control groups for comparison, and to try
to hold many factors constant in order to isolate cause and effect. Examples of
experimental science include tests to determine the appropriate concentrations for a
new medication, or comparative tests of airplane wing designs in a wind tunnel.

In the third method, theoretical science, a law or theory is hypothesized and then
substantiated by additional research and rigorous mathematics. Examples of theoret-
ical science include the complex equations describing fluid flow, and the familiar
formula, e=mc2, in Einstein's theory of relativity.

Computational Science

The fourth and newest method of scientific investigation uses advanced computer
technology and is referred to as computational science. Because high performance
computers have become so po%srful, scientists are now able to use them as tools to study
a wide variety of very complex problems. Supercomputers can help devise safer
automobiles, build better airplanes, create special effects in Hollywood movies, and can
even be used to design faster supercomputers.

A very practical application of supercomputer p wer is in the area of computer
modeling and simulation. One distinct advantage of certain computer models is that
they can be used to speed up extremely slow processes in order to predict potential
outcomes in the future. Long range weather forecasting and the problems of global
warming are environmental studies which are being investigated by supercomputer
models. Scientists have even been able to study the effects of seemingly harmless forest
management techniques which have now contributed to increased forest fire potential.

Computer simulation models are also excellent choices to study prof %see which
happen too quickly to observe by a direct experiment. They are very useful to investigate
the behavior of things which might be too small to examine by any physical means. Some
examples include molecular dynamics simulations and three dimensional modeling of
chemical compounds which can help scientists understand the physical properties of
these structures.

Computer models can be used to explore situations which researchers cannot
experience directly. For instance, some scientists are investigating the nature of black
holes using supercomputer simulations while others are studying the development of
severe thunderstorms in order to understand the internal conditions which might cause
tornados.

Graphics Visualisation

Closely related to supercomputing is the field of graphics visualization. Instead of
just looking at numbers, scientists can display supercomputer output in a visual fon.

130

using high quality computer graphics. Through computer graphics, researchers are
often better able to comprehend large quantitiesof data and notice subtle trends. In the
excellent series NCSA RealTime (1992), the National Center for Supercomputing
Applications has compiled some motivational video segments which show the wide
range of graphics visualization techniques being used in current supercomputer
applications.

Some graphics visualization approaches may use just simple two-dimensional
graphs of lines or dots on the screen, while others can display three-dimensional
renderings of objects, contours, and surfaces. Advanced visualization techniques may
include computer animations with realistic colors, reflections, and shading (Foley, van
Dam, Feiner, and Hughes, 1990).

Color is a very valuable tool in graphics visualization. It can be used to enhance
images or provide emphasis to details which might not be readily apparent. Engineers
can better view air currents and turbulence around new car designs with color
enhancement. Architects can look for regions of material stress in structures which
might fatigue under heavy use.

Doctors are using three-dimensional imaging to view cancerous tumors in the body
which might be very difficult to discern by conventional x-rays. Using similar tech-
niques, anthropologists can even investigate the interior of ancient mummies without
ever unwrapping them.

Supercomputing Applications for High School Students

Students at the secondary school level should realize that many of the previously
mentioned applications using supercomputers involve huge projects with teams of
scientists, technicians, and programmers. Themathematics being used in some of these
investigations is often far beyond the scope of a typical high school curriculum.
However, there are computational science techniques which can be incorporated into
the typical high school program. Some methods which have been used successfully at
Thomas Jefferson High School for Science and Technology are presented in the
following examples.

Example #1- Missile Trajectory

This example investigates a standard physics problem of missile trajectory, the
typical scenario of a projectile launched toward a target which is a known distance away.
The problem is to find which combinations of launch angle and corresponding velocity
would be needed in order for the projectile to land arbitrarily close to that target.
However, instead of solving the problem analytically, the following presentation uses
a computational science approach.

Equations of the Model

As shown in Figure #1, the height y of the projectile at time t is defined as:

y = * t 0.5 * a * t2

131 1

where v, is the component of velocity in the vertical direction and a is the acceleration
toward earth by the force of gravity.

The horizontal distance x travelled during time t is defined by the simple equation:

x = v. * t

where v. is the component of velocity in the horizontal direction.
Given the initial velocity v and launch angle theta, the components of velocity can

be obtained using simple trigonometry:

v. = v * cos(theta)
v = v * sin(theta)

Uy = v * sin(theta)

the = w * cos(theta)

Figure 1. Diagram of basic model parameters

Model Prototype

The first step in creating a computational model is to develop a simple prototype and
then validate it against known behavior. For this example, a possible first stage might
be to display a simple graphic showing the position of a projectile over time given an
initial velocity and launch angle. The number of points plotted on the screen depends
upon the time step, or the length of time between successive values of t. The following
pseudocode describes the basic algorithm.

Enter Values:
v (velccity),
theta (launch angle),
dist (target distance),
range (error margin or acceptable radius for "hit")

Initialize Variables:
t=0 (time),
tetep = 0.1 (time step between calculations)
a=32 (Gravitational constant in ft per sec2)

132

.1'11ti

Find velocity components:
vi=vecos(theta)
vy=v*sin(theta)

Loop through all combinations:
Repeat

t = t + tstep (Increment time step)
y = v, * t 0.5 * a * t2 (Calculate height)
x = v. * t (Calculate horizontal distance)
plot(x,y) (Plot position of projectile)

Until y <= 0 (Until missile has hit the ground)
Test for accuracy:
If Abs(xdist) < range

then result = Hit
else result = Miss

Figure 2 shows the plot of a projectile shot at two different velocities but at the same

angle of 60 degrees. The distance to the target for the simulation is 600 feet, the error
margin was 20 feet, and the time step was 0.2 seconds. Notice that a projectile fired at
150 ft/sec would hit the target whereas an attempt at 140 ft/sec would fall short of the

mark.

y

........
.

%
.

.. ..
-

.
' .0
: .

.

I

Figure 2. Trajectories at 60 degrees: 140 ft/sec and 150 ft/sec

Validation of the Prototype

Validation of a computer simulation model is one of the most important steps of any
investigation. No matter how intricate a model might be, if that model does not
adequately define the situation, there is no sense in drawing any conclusions from the
simulation. In all computer models, there arecertain simplifying assumptions that must
be made since it is not possible to accurately simulate every single detail. Therefore, it

is important that these simplificationsdo not interfere with the integrity of the model.

In this example, one possible behavior to validate is that the flight path of the
projectile follows an expected parabolic curve. This can be done graphically. Another
detail to establish is an appropriate time step between consecutive values of t in order

to have predictable results when the projectile finally hits the ground. The time step

could be made extremely small to increase accuracy, but that would make theexecution

133 1 4

time of the simulation much greater. Supercomputers are able to calculate at very rapid
speeds, but there is no sense in wasting computer cycles unnecessarily.

To be sure that the model works correctly, it should be tested with several
combinations of parameters where the behavior can be carefully analyzed and compared
with known results. Good values to check are examples from mid-range as well as the
extremes. Deviations from known behavior must be studied carefully and any problems
corrected if the results are to be meaningful.

Expanding to a Supercomputer Application

Modern supercomputers are able to compute at hundreds of millions to even billions
of calculations per second. Yet, unless algorithms are designed properly, much of that
potential will never be accessed. The key to unleashing the computational power of most
supercomputers is to find a way to do many similar calculations in parallel. Some
supercomputers use a technique called vectorization which handles arithmetic with
large arrays using a method similar to an assembly line. In other supercomputers, the
same primary calculation is done by many separate processors simultaneously, but with
different initial values.

The basic prototype simulation runs easily on a microcomputer and certainly does
not require a supercomputer. However, to make this a supercomputer application, the
problem can be expanded to compare a full range of velocities between 0 and 1000 feet
per second with all possible launch angles between 0 and 90 degrees. That will require
a lot of calculations, but a supercomputer should be able do much of the work in parallel
in order to produce results more rapidly. The desired outcome showing a complete
picture of acceptable combinations is very computationally intensive, but just right for
a supercomputer.

Displaying Results

To analyze the results, it would be possible to print a list of ordered pairs that are
solutions, but a better approach might to select a visualization technique using
graphics. The method chosen for this example uses each pixel position on the screen to
represent a different combination of distance and launch angle. Horizontal pixel
coordinates stand for different velocities and vertical coordinates represent variations
in launch angle. There are many combinations to try, and thus, very many simulations
to run. In standard VGA graphics, there are 640 pixels horizontally by 480 pixels
vertically, or 307,200 combinations. A supercomputer may be able to do many of these
calculations simultaneously, although a standard PC would have to try each combina-
tion separately.

For each of the defined positions, the prototype model described earlier must go
through its full simulation and then decide whether the combination of parameters
produced a hit or miss. The screen position is then colored differently depending upon
the result: a darker shade for a hit, or two alternating lighter shades for a miss.

Figure3. Trajectory model computational science scLution

The graphic image in Figure #3 shows the results for the expanded model. The

horizont, I axis represents velocity, the vertical axis represents launch angle, and the

solutie-, set is clearly visible by the dark curved line. However, the simulation took

several hours to complete on a PC running Turbo Pascal, and any enhancements would

make execution time even longer.Therefore, it is a perfect candidate for a
supercomputer application. kri interesting byproduct of the graphics visualization

process in this example is the unusual pattern in the background. The design happens

because the simulation plotted alternating colors for various distances where the
projectile missed the target. The pattern is a function of not only how often the color
changes (every foot versus every ten feet), but also the value used for the time step in

the simulation.

Comparison to the Analytical Solution

There is also a purely mathematical solution to this investigation which is not too
difficult to derive. Using the basic equations of the model combined with the fact that
when the projectile strikes the target, the vertical height is zero yet the horizontal
length equals the distance from source to target, it is possible to solve a system of

equations which can be resolved into a single form defining velocity in terms of launch

angle, given various constants for targetdistance and gravitation. That relationship can
be graphed to show the same solution set described by the computational approach. The

mathematical solution is defined by the following equation:

v = SQRT((a * dist)/(2 * SIN(theta) * COS(theta)))

So why use a computational model when mathematics is obviously more exact? For

one reason, if there is desire to expand the model to include other factors such as wind

135

116 BEST COPY AVAILABLE

resistance, spins, bounces, and interference with various obstacles, then an analytical
approach becomes increasingly more difficult. However, modifications to the computa-
tional model are comparatively easy since only additions to the basic simulation need
to be defined.

There are times when the computational model may be the only alternative. in fact,
some situations which seem relatively simple cannot be solved analytically at all.
During the first SuperQuest contest, one student (Scheirer, 1988) from the Jefferson
team developed a visualization technique to analyze one such unsolvable problem, the
classic "three body problem". The difficulty in finding an analytical solution for three
planets having mutual gravitational attraction is related to their interdependencies of
that gravitational pull. Using a supercomputer simulation and a graphics display
approach similar to that used in the trajectory model, the student was able to gain a
partial understanding of the dynamics of that system.

Computational models are not fool proof either, for there are often difficulties with
chaotic behavior and sensitivity to initial conditions. However, a carefully designed
computational approach can often provide some insight into many "unsolvable" prob-
lems in mathematics and science.

Understanding the Trajectory Model

There are several things that the missile trajectory investigation can show. The
visualization technique not only defines acceptable values for velocity and launch angle
by means of a graph, but also shows that for a broad range of angles on either side of 45
degrees, the velocity required for a hit is not nearly as sensitive as it is at the extremes.
When the angle approaches either zero degrees or 90 degrees, a slight change in angle
requires a significant change in velocity in order to make a hit. This relationship,
although intuitively obvious, is very clearly shown by the computer graphics.

Computational science models can provide alternative methods for investigating
problems of all kinds. With the aid of graphics visualization, scientists can often gain
additional insight into many research investigations. Sometimes an unrelated aspect of
the display, such as the patterned background in the trajectory example, might be the
inspiration for yet another project.

Example #2 The Gypsy Moth

Another example we have used at Jefferson involves population dynamics of the
Gypsy moth caterpillar, an extremely damaging pest of forests in the eastern United
States (Milne & Milne, 1980; US Department of Agriculture, 1952). In 1869, Gypsy
moths used in a scientific experiment escaped from a laboratory in Massachusetts, and
since there are no natural predators here, successive generations have been ravaging
forests in the northeast ever since.

Model Parameters

As with the trajectory model, there are certain equations and parameters which
control the basic functioning of Gypsy moth ecology. For instance, a female moth can lay
between 400 to 1000 eggs in a single season. When these eggs hatch the next spring, the
tiny caterpillars crawl up to the top of forest trees and start eating leaves. There is little

136

141

damage at first, but as the caterpillars grow in size, each one can eventually consume
up to three square feet of leaf surface every day. Caterpillars hatch in early spring, feed
until mid summer when they develop into pupae, and after a short time, emerge from
the pupae as adult moths. In the moth stage they do not eat leaves anymore but just
mate, lay eggs, and die. Fortunately, there is only one generation per year.

Gypsy moths spread by several methods. Because females contain so many eggs,
adult moths are too heavy to fly although they are able to crawl. Adults often lay egg
masses on moveable objects such as automobiles or campers which then travel to other
regions of the country. When these eggs hatch, a new infestation site becomes
established.

At first, the young larva are quite small and can be blow.. by the wind on silk threads
for distances up to ten miles. As caterpillars become larger, they can no longer travel by
that method but will crawl to adjacent forest regions in search of food.

During severe infestations, trees can become completely defoliated very rapidly.
Most trees will die after one or two defoliations, thus eliminating a potential food supply
for the growing moth population. Caterpillars seem to like ,:ertain trees better than
others; oak trees are a preferred food but the caterpillars rarely ever eat tulip poplar
trees.

Gypsy moth caterpillars are not affected by many standardpredators since the larva
usually hide during the day and eat only at night. There are some specific predators
which may eventually create a natural balance, but human intervention is an important
factor in minimizing primary forest damage in eastern forests. Some human methods
of control include destroying egg masses, trapping caterpillars, and spraying trees with
biological or chemical controls.

As with any good scientific research, it is important to survey available literature
on the subject to review what has been done previously, and to establish precise
parameters for an accurate simulation. A more thorough research of Gypsy Moths is
recommended before building a realistic model, but the information provided above is

probably sufficient to get a prototype started.

Stages in Prototype DevelopmentImportance ofValidation

With a situation as complex as Gypsy moth ecology, it is important to develop the

prototype simulation in stages, validating each new characteristic as it is added to the
model. To try to put every conceivable aspect of a computer simulation into a model at
the beginning and later attempt to validate the result will usually lead to serious
difficulties.

A first stage of development in a Gypsy moth simulationwould be to model a simple,
closed population of moths with a standard birth rate and unlimited food supply. The
time step could be done on a daily basis, but probably a yearly summary of Gypsy moth
statistics would be sufficient since the desired outcome of this project is to show the
qualitative behavior of a population over a long period of time. The expected behavior
of this first stage would be to make certain that the model shows a typical exponential
growth curve such as that shown in Figure *4. Gradually, other characteristics should
be added, and the accuracy checked each time against expected behavior of the
population. Figure 45 shows a repeated collapse of the Gypsy moth population due to
overpopulation and starvation when all of the food supply is consumed.

137 .4

Population

Time

Figure 4. Typical exponential growth curve

Population

Time

Figure 5. Growth curve showing repeated overpopulation and starvation

There are always random factors which affect such simulations, but it is important
to avoid adding random occurrences until all aspects of the model have been validated.
Early introduction of random numbers to make things "interesting" should definitely be
avoided. It is usually very difficult to determine whether the behavior of a model is the
result of the randomness, or the result of complex interactions among other factors in
the simulation. Constant values within an expected range should be used initially to
prove the model is working correctly. Random numbers can always be added later.

138

14J

Expanding the Model

The prototype for a sample population will usually become quite involved as various
aspects of a realistic simulation are included. Even so, this simulation could still be
handled quite easily by a standard PC. The need for a supercomputerbecomes apparent
when a much larger region is modeled using many different 'cells", all running in
parallel. This modeling technique is often referred to as a cellular automaton (Toffoli &
Margolus, 1989). Each cell would carry the fundamental rules of the initial prototype,
but now migration of caterpillars and moths tnto adjacent cells can be included in order
to look at the overall dynamics of Gypsy moths spreading into new forest areas.

It will be necessary to maintain much information about each of the cells, such as
the number of caterpillarb, birth rates, death rates, food supply, types of trees, history
of past defoliations, the existence of predators, and spraying programs. Huge arrays of
data will be required to keep track of all the important information available for a large

number of cells.
This problem could now become too large for a typical supercomputer run if the same

graphics visualization technique used in the trajectory model is applied here. To use
every pixel on the screen as a separate cell would require extensive amounts of memory
which might not be practical. A better approach in this case would be to divide the screen
into small squares or other geometric shapes where each polygon stands for the status
of a small segment of the overall population. With fewer cells and lower data require-
ments, it might be possible to accumulate information for successive years and display
results as an animation over time.

Figures #6, #7, and #8 show various stages of the cellular automaton approach to the
simulation. The darker the color within a cell, the greater the number of Gypsy moths

in that region.
ANI

pr.*

'or *rm...

A A

Figure 6. Initial stage of the gypsy moth population cellular automation

139
1

... ..

Figure 7. Intermediate stage in gypsy moth simulation

Figure 8. Final stage in gypsy moth simulation showing population collapse

Porting the Model to a SupercomputerConversion to FORTRAN

Although most students in high school would prefer to program in Basic, Pascal, or
C. unfortunately most supercomputers prefer FORTRAN. Compared to many computer

140

languages, FORTRAN has a relatively simple structure and therefore compilers can
optimize code to better take advantage ofvectorization andparallelism in supercomputer
architectures. Since FORTRAN will usually run faster than most other languages, it
should be the language of choice when speed is a priority. Another advantage of
FORTRANis that it is very mathematically oriented with special features, such as
exponent operators and complex number arithmetic. Also, many supercomputers
already have special libraries supporting advanced mathematics and engineering
routines written in FORTRAN.

Rather than rewriting every part of the program in FORTRAN, only the main
algorithm and data producing routines should be converted. Most supercomputers will

not directly display graphics, so the visualization portion can remain in whatever
language was used to develop the prototype. The FORTRAN portion will be used to
generate data files on a supercomputer. The dataproduced can eventually be displayed
on a PC or graphics workstation to see the results.

These data files can be rather large, so additional consideration should be taken to
minimize the space requirements needed to represent an image. For instance, if a full

screen in VGA graphics has 307,200 pixels, then a data file of integers where each pixel
position is represented by five characters (a 4-digit integer field separated by a space)
will create 1,536,000 bytes of data. A file this size will not fit on most standard floppy
disks! However, if each pixel can be represented by a single character and no spaces,
then the file will be just the 307,200 bytes long. Even better, if it is possible to do some
clever data compaction, such as packing the display data of four pixels into a single
character, then the file size would be just 76,800 bytes.

Once the supercomputer portion is written in FORTRAN, and supporting graphics
display routines written in any appropriate computer language, the real scientific
research can begin. The trajectory model might be used to investigate basketball free
throws, with and without such factors as bouncing of the backboard and including
various spins on the ball.

The Gypsy moth model could be modified to explore many different scenarios. Is it
possible to keep populations relatively stable by resorting only to biological controls, or
must hazardous chemicals be used to save the forests? Should trees that Gypsy moths
don't like be planted in regions where moths are expected to migrate in order to avoid
severe defoliation? Is it possible to predict the nature of forest evolution since favorite
tree species might eventually become extinct? These and many other interesting
questions might be answered by a realistic computer model.

A word of warning, though. Before ever predicting the outcome of a simulation,
check to see how sensitive the model is with respect to initial conditions. Sometimes a
slight modification in one of the parameters can lead to totally different results. It is
important to know if there is a tendency toward such chaotic and unpredictable
behavior.

Finding Ideas for Supercomputer Projects

For high school students, it is sometimes disappointing to look for project ideas by
researching current supercomputer applications being done at a university level. Often
these investigations are very complex requiring advanced levels of mathematics,
physics, and other subjects. To try to match what college professors and graduate

141 1 t)

students are currently doing is rather ambitious and potentially frustrating for many
high school students.

A better approach is to look for computational science projects in subjects where
students already have considerable background. Students are often more successful
applying supercomputing techniques to relationships in familiar areas of science rather
than in the latest trends. There are possibilities for new and creative investigations in
practically every field. After all, supercomputing power has not been available for that
many years.

Current hobbies and interests are excellent sources for project ideas since students
will already have a large knowledge base and such topics are typically self-motivating.
It can be helpful to look for simple scientific principles which might be interrelated in
some way. People may know what the basic laws of science are, but do they know how
those laws interact in more complex systems?

The visualization techniques implemented in the two examples could be helpful
when trying to formulate a new problem. For instance, rather than modeling a
projectile, some other physical relationship could be studied using a program design
similar to the trajectory example. It is important to build on the knowledge of others, but
then be creative in order to discover something new. That is the essence of scientific
investigation.

As an introduction to graphics, students may find the topics of fractals, chaos, and
dynamics very notivational. Images in the complex plane such as the Mandelbrot set
and Julia sets are very computationally intensive and good projects for introducing
supercomputing techniques. The monograph by Robert L. Devaney (1989) and James
Gleick's (1987) best seller, Chaos, are good introductions to these topics and potential
sources for ideas. During the 1988 SuperQuest contest, one Jefferson student developed
a research project which was inspired by Gleick's book. The student showed how the
various portions of a fractal generated by Newton's method (Tuteja, 1988) were all
related, and was able to describe the convergence process in a simple recursive
definition. His project was judged best overall in that year's competition.

Ideas for some excellent projects can often come from simple examples. For instance,
after reading about the physics of baseball, a former student and varsity athlete began
a simulation of the flight of a baseball (Berkey, 1991) using an approach similar to the
prototype in the trajectory example. Expanding the model to three dimensions and
including many other factors, he eventually showed that a gradual slowing down of the
spin on a baseball during its flight significantly modifies physical forces involved. This,
in turn, affected the optimum angle with which to hit the baseball.

There are many areas in pure computer science which have interested Jefferson
students, such as simulation of parallel architectures (Hargrove, 1990), multi-tasking
operating systems (Rosen, 1988), and distributed processing (Brown, 1990) over
networked computers. Subject areas which typically do not involve computer science
have been sources for excellent projects t 3o. One student developed a simulation of the
interaction of biological oscillators in the heart (Sadananda, 1990). She showed that
chaos in the heart muscle could develop under certain conditions which would result in
cardiac arrhythmia. Another student used artificial intelligence techniques (Bishop,
1990) combined with raw supercomputing power to help arrange choral music in the
style of famous 18th century composers such as Mozart.

Although there are many applications which are appropriate for a supercomputer
to solve, there are many others which are not. For instance, interactive tutorials and

computer games are best handled by a regular microcomputer rather than a high
powered supercomputer. Students will need to recognizewhen to use a supercomputer
and how to develop parallel algorithms, since computational science will become a
standard investigative technique in the next generation. Many of these technological
skills can be learned in high school and will therefore be available when needed
throughout college and eventual careers.

Without the help of more powerful supercomputers, many problems which scien-
tists are facing may not be resolved. Fortunately, computercompanies will continue to
build faster machines, but unless there are skilled persons to use the equipment
effectively, there will not be a market for those latest innovations. One thing is certain,
though. Talented people with a strong background in cutting edge technologies will
always be in demand.

References

Arnold, C. (1988). What is supercomputing? Audio Cassette and Slide Presentation. Minneapolis,

MN: ETA Systems.
Devaney, R.L. (1989). Chaos, fractals, and dynamics: Computer experiments in mathematics,

Menlo Park, CA: Addison-Wesley.
Etter, D. M. (1990). Structured fortran for engineers and dentists (3rd ed.). Redwood City, CA:

Benjamin/Cummings.
Foley, J.D., van Dam, A., Feiner, &K., & Hughes, J.F. (1990). Computer graphics, principles and

practice (2nd ed.) Menlo Park, CA: Addison-Wesley .
Gleick, J. (1987). CHAOS: Making a new science. New York: Viking Penguin.

Karin, S., & Parker Smith, N. (1987). The supercomputer era. Orlando, FL: Harcourt Brace

Jovanovich.
Hwang, K., & Degroot, D. (1989). Parallel processingfor supercomputers & artificial intelligence.

McGraw-Hill.
Milne, L., & M. (1980). The Audibon Society field guide to North American insects and spiders,

Alfred A. Knopf.
Toffoli, T., & Margolus, N. (1989). Cellular automata machines: A new environment for modeling.

Cambridge, MA: MIT Press.
Supercomputing Review. (1988). Premier Issue. San Diego, CA: London Manhattan Publishing.

The physics problem solver. (1976). New York, NY: Research and Education Association.

Insects, the yearbook of agriculture. (1952). Washington DC: United States Department of

Agriculture.
NCSA realtime (1992). Video Cassette Volumes #1-#4. Urbana - Champaign, IL: National Center for

Supercomputing Applications.
The International Journal of Supercomputer Applications (1990), 4(2).

Student Research Papers

Berkey, J. (1991). The effects of spin reduction on the launch angle that maximizes the range of a

baseball. Finalist 50th Westinghouse Science Talent Search.
Bishop, L.M. (1990). Computer arrangement of /8th century choral music through an artificially

intelligent knowledge-based system. Semi-finalist 49th Westinghouse Science Talent Search.

143 .1J-4

Brown, D.R. (1990). A simulation of locally optimised load balancing in distributed processing.
SuperQuest 1990 and Send-finalist 50th Westinghouse Science Talent Search.

Hargrove, P.H. (1990). Developing a computational model of parallel computing systems. Semi-
finalist 49th Westinghouse Science Talent Search and Winner SuperQuest 1990 Best Paper
Competition.

Rosen, J.D. (1988). The effectiveness of various priority queuing algorithms as applied to a
multitasking system. SuperQuest 1988 and Finalist 48th Westinghouse Science Talent Search.

Scheirer, E.D. (1988). A chaotic analysis technique for the planar restricted three-body problem.
SuperQuest 1988 and Semi-finalist 48th Westinghouse Science Talent Search.

Sadananda, V. (1990). Chaotic cardiac arrhythmias. SuperQuest 1990 and Finalist 50th Westinghouse
Science Talent Search.

Tuteja, M.K. (1988). Paths of convergence to the roots of unity by the Newton-Raphson method: An
investigation. SuperQuest 1988 Best Paper and Semi-finalist 48th Westinghouse Science Talent
Search.

Source Code - Trajectory Model

Pascal Source Code for the Full Prototype Model

PROGRAM Trajectory(INPUT,OUTPUT);
(C This is a prototype model for a supercomputer application.
r The program will run through a basic simulation for each
(" pixel position on the screen. Every pixel represents a
r combination of parameters for velocity and launch angle,
(" and its color will be determined by whether the missile was
r close to the target or not. The resulting screen display
(* is a way of showing the solution using a graphics
r visualization technique.

USES
Graph,Crt; (C Graph Unit allows for Turbo Graphics Access

CONST xwidth = 639; r Maximum Horizontal pixel position
ywidth = 479; r Maximum Vertical pixel position

PROCEDURE DrawAxes(vmax:REAL);
r Draw Axes on the screen and display

r range for launch angle and velocity.
VAR

s:STRING;
r Temporary string for use in printing valuer i graphics

BEGIN
Setcolor(15); r Set color to draw axes
Line(0,0,0,460); r Vertical Line -> y-axis
Line(0,460,639,460); r Horizontal Line -> x-axis
OutTextXY(0,469,'0.0);(* Print minimum velocity on screen
Str(vmax:5:3,$); (" Convert max velocity to a string

144
1U)

OutTex0CY(600,469,$); r Print max velocity on screen I
OutTextrf(0,200,Theta); r Label vertical axis
OutTex0CY(270,407,'Velocity); r Label horizontal axis
outTextxy(0,0,'90.0); r Print maximum angle on screen I
OutTextXY(0,480,'0.0); r Print minimum angle on screen I

END;

PROCEDURE SimulateProjectile(velocity,theta,timestep,
distance,range:REAL; VAR color.WORD);

r This is the basic module for the simulation. The laws of 1
r physics are used to determine the position of a projectile I
r over time, given the initial velocity, launch angle (theta)
(timestep between different time values, the distance to the 1
r target and how close the projectile can come and be counted 1
r as a hit. The values for all of these parameters are passed 1
r to this procedure from the primary routine. The procedure 1
r will return a color value which indicates whether the 1
(projectile hit or missed the target.

VAR vx,vy, (Vertical and horizontal components of velocity I
time, r Current time for basic simulation

x,y:REAL; (Current horizontal and vertical positions)

BEGIN
vy := velocity " sin(theta); r Find y-comp. of velocity
vx := velocity cos(theta); r Find x-comp. of velocity 1
time := 0; r Reset time to zero
(Basic prototype loop)
REPEAT r Follow Parabolic path of projectile

time := time + timestep; r Increment timestep
y vy time - 10 time time; r Calculate height

UNTIL y <= 0; r Continue until projectile hits the ground 1
x ABS(vx time - distance); r How close to target

IF x < range r If projectile within range
THEN r Considered a hit
color := 15 (color for a 'hit' ')

ELSE r Else it's a miss
color := (trunc(x/range) mod 2); r Alt. colors

r for various misses
END;

PROCEDURE DoScreenPositions(distance,vmauc,timestep,range:REAL);
r This section will step through every pixel position on 1

145 0

e the screen and send the appropriate values to the module
e 'Simulate'. It will then plot the appropriate shade on
C the screen depending upon whether the result was a hit or
e a miss.
e Parameters: dist. to target, maximum velocity, timestep
(' for simulation, range considered close enough for a hit.

VAR verticaLhorizontal:INTEGER; e Pixel screen coordinates

theta,thetastep,e Angle values & dist. between choices
velocity,vstep, r Velocity values & step between choices
x,y :REAL; e Vertical & horizontal position in feet
color: WORD; e Color of pixel that will be plotted

BEGIN
thetastep := Pl/((ywidth-19)`2);

Compute distances between successive angles
(' PI/2 divided among vertical pixel positions

vstep := vmax/xwidth;
(* Compute distance between successive velocities

Max velocity divided by horizontal pixel positions

theta := 0; e Set angle to zero

DrawAxes(vmax); Draw Axes for reference

FOR vertical := TO ywidth-19 DO e Do all rows of pixels
BEGIN Start next row of pixels

velocity 0; e Reset velocity for next row
FOR horizontal := 1 TO width DO C Do all pixels in row
BEGIN

SimulateProjectile(velocity,theta,timestep,
distance,range,color);

e Send current set of parameters to basic simulation routine
PutPixel(horizontal,ywidth-19-vertical,color);

e Color the current pixel position on the screen
velocity := velocity + vstep;
e Try next velocity combination')

END; (' End of row of pixels C)
theta := theta + thetastep;

(" Go to next angle by adding increment ")

END Continue until all rows are done')

END; r End of procedure ")

LJ
146

C)

PROCEDURE Main;

VAR Gd,Gm:INTEGER; r Gd - Grbphics Device, Gm - Graph Mode

vmax, r Max. velocity to try in the simulation
distance, (Distance to the target
timestep, (Timestep for the simulation
range:REAL; (Radius from target which counts as a hit

BEGIN
writeln('Enter distance to the target:);
readln(distance);
writein('Enter maximum velocity:);
readln(vmax);
writeln('Enter time step for the simulation:);
readln(timestep);
writeln('Enter distance from target which will count as a hit:');
readln(range);
Gd:=Detect; (PC will determine what kind of graphics
Init Graph (GD, GM, 'C: \TP '); (Initialize graphics window

r Path to EMI drivers in CATP
DoScreenPositions(distance,vmax,timestep,range);

(Call main routine)
Drawaxes(vmax); (Redraw Axes)

END;

BEGIN
main

END.

FORTRAN Source Code for Generating Supercomputer Data

a)

PROGRAM SMODEL
C FORTRAN program to generate screen data for the trajectory
C model. This program will be run on a supercomputer. The

C data file generated will be transferred to a PC where the

C results can be displayed graphically using Turbo Pascal.
PARAMETER (PI=3.1415962)

C
REAL V,VMAX,VSTEP,VX,VY,THETA,THSTP,X,Y,T,TMSTP,DIST,FtANGE

C Real Variables: current velocity, maximum velocity,
C velocity step, x-component of velocity, y-component,
C angle (theta), theta step, x-coordinate of projectile,
C y-coordinate, distance, and range
C

147
1

INTEGER COLOR,ROWMAX,COLMAX,ROW,COL,TEMP,COUNT,POS
C Integer Variables: pixel color, maximum row value, maximum
C column, row position, column position, temporary value
C for packing screen information, count of packed values in
C a character, position in the character array.
C

CHARACTER180 LINE
C Character Variable: Line which holds 160 characters, each
C of which holds information for four pixels. Total width
C is 840 pixels
C

OPEN(9,FILE='STATS.TXT)
OPEN(10,FILE='scr.dat)

C Open Files for input and output
C
800 FORMAT(14,I4,F10.3,F10.3,F8.2,F8.2)

READ(9,800,END=111) ROWMAX,COLMAX,VMAX,DIST,TMSTP,RANGE
C Read Current statistics for run: ROWMAX=480, COLMAX =640,
C VMAX=1000.0, DIST= 600.0, TMSTP=0.1, RANGE=20.0

WRITE(10,800) ROWMAX ,COLMAX,VMAX,DIST,TMSTP,RANGE
C Write header to data file for later use by display program
C
C Initialize Parameters

VSTEP = VMAX/COLMAX
THSTP = (PI/2)/ ROWMAX
THETA=0
COUNT = 1
TEMP = 0

C
C Outer Loop -> Do all rows of Pixels

DO 300 ROW=1,ROWMAX
POS = 1
V=0
THETA=THETA + THSTP

C
C Inner Loop -> Do one row of pixels. Data will be compacted.

DO 310 COL=1,COLMAX
C Initialize remaining variables for specific run

WV + VSTEP
T=0
VX=V COS(THETA)
W=V SIN(THETA)

C
C Simulated REPEAT/UNTIL loop which is basis of simulation
320 T=T+TMSTP

Y=WT-18*(T" 2.0)
X = VX ' T
IF (Y.GT.0) GOTO 320

148

C End of REPEAT/UNTIL loop structure
C
C Check to see if projectile came close to target
C Color values will be a 1 (hit), or else a 2 or 3 (misses)

IF (ABS(X-DIST).LE.RANGE) THEN
COLOR=1

ELSE
COLOR = X/RANGE
COLOR = MOD(COLOR,2) + 2

ENDIF
C Pack information of four runs into one character

TEMP = TEMP% + COLOR
COUNT = COUNT + 1

C If character has four data points, put value into buffer

C and continue. Note that input and output are usually the

C slowest aspects of computer operations. This is an attempt

C to minimize constant writes to a file for each separate

C character by writing a block of characters at once. Even so

C it may be necessary to remove the compaction operation from

C within the inner loop since the data dependency might make

C it difficult for a supercomputer to do the heaviest

C computation in parallel.
IF (COUNT.GT.4) THEN

LINE(POS:POS) = CHAR(TEMP)
POS = POS + 1
COUNT = 1
TEMP to 0

ENDIF
310 CONTINUE
C End of Inner Loop
C Write out the buffer

WRITE(10,850)LINE
850 FORMAT(A180)
300 CONTINUE
C End of outer loop
C Close all files and terminate the program
111 CLOSE(9)

CLOSE(10)
STOP
END

Pascal Source Code for Displaying Supercomputer Data

PROGRAM ImageRestore(INPUT,OUTPUT);
(' This program reads data generated by a supercomputer and 1
r then displays the information graphically on the screen. *)

C The data been encrypted In order to conserve space. Each ')

149

lo d

r character in the file holds the information for four
r values. Those values are regenerated by using the
el' operations DIV and MOD on the ORD of the character and
r then plotting the related pixels in the proper place on
r the screen.

USES
Graph,Crt; r Graph Unit allows for Turbo Graphics Access

VAR intik,: TEXT; r File containing screen data

PROCEDURE DisplayData(filename:string);
r This procedure opens the appropriate file and displays
r the data on the screen after extracting four values from
r each character in the file.

VAR group, r Groups of four pixels forming a row
count, r Which pixel within each group
val, r Integer representing character read from file
xwidth,ywidth, r Screen dimensions from input herder
vertical,horizontal:INTEGER;

r Pixel coordinates on screen
color. WORD; (Color of pixel that will be plotted
ch: char; r Character to be read from the file
vmax,thstep,distsange:REAL;

r Dummy Variables in header

a)

a)

BEGIN
Assign(infile, filename); r Open !nfile to access data
Reset(infile);
Read(infile,ywidthdcwidth,vmax,thstep,dist,range);
FOR vertical := 0 TO ywidth DO r Do all rows of pixels a)

BEGIN r Start next row of pixels
horizontal := 3; r initialize horizontal position

(for first four pixels
FOR group := 0 to 180 do r Do a row of pixels
BEGIN

read(infile,ch); r Get charrxtor from the file
val := ORD(ch); r Convert to an inuilicr

FOR count := 0 TO 3 DO r Extract four pixels 7
BEGIN
color := val MOD 4; r Value for next pixel

r Change to the appropriate screen color
if color * 1 then color :* 14
else color := color 2;
putpixel(hodzontal-count,470-vertical,color);

r Plot pixel in the appropriate position

val := val DIV 4; ('Get next data value
END; (*End of FOR loop

horizontal :=horizontal + 4;
(* go to next four pixels *)

END; ('End of one row of pixels ')
END ('Continue until all rows are done')

END; ('End of procedure 1

PROCEDURE Main;

VAR Gd,Gm:INTEGER; (* Gd - Graphics Device, Gm - Graph Mode')
filename:string; (* Name of supercomputer data file 1

BEGIN
Writeln('Enter filename containing supercomputer data');
Readln(filename);
Gd:=Detect; (*PC will determine what kind of graphics ')
InitGraph (GD, GM, 'CATP);

(' Initialize graphics window *)

('Path to BGI drivers in CATP *)

DisplayData(filename); (* Call main routine
END;

BEGIN
main

END.

Contacts for More Information

Donald W. Hyatt, Computer Systems Laboratory Director
Thomas Jefferson High School for Science and Technology
6560 Braddock Road
Alexandria, Virginia 22312
(703)-750-8300 main office (703)450.5026 computer lab

SuperQuest
Cornell Theory Center
424 Engineering and Theory Center Building
Ithaca, New York 14853
(607)-255.4859

151

Chapter 8

Scientific Visualization in Chemistry, Better Living 7 hrough
Chemistry, Better Chemistry Through Pictures: Scientific

Visualization for Secondary Chemistry Students

ROBERT R. GOTWALB, JR.

Like it or not, visual literacy was ordained the moment the first television flickered

on a half century ago, and no country has adapted better than ours. With information
from every conceivable source coming at us more and more rapidly each day, the old
ways of processing it have become inadequate. Because images pack countless insights
and ideas into a fleeting moment, and communicate information more efficiently than
words, they have become the preeminent means of relaying knowledge.

So says Leonard Steinhorn (1992) in his editorial entitled "Whiz Kids in America."
He suggests that American youth, in the many hours devoted to MTV and Nintendo, are
on the cutting edge of the Information Age. He suggests that "through video and
computer games and all the fast-paced and disjointed videos on MTV, young Americans
have been processing information in a way that makes little sense to the uninitiated, but
is really the wave of the future." He also states that "computer technology has already
made more knowledge available at our fingertips than our parents had at their local
libraries, and products soon to be mass marketed will make what we have now look like
a children's book." He also states that "the problem is how to digest such immense
amounts of information without being completely overwhelmed."

Chemistry is a hard subject to teach and a hard subject to master. Many of the
concepts and ideas we try to teach do not lend themselves to students' natural intuition
and knowledgebase. Most of the concepts are highly abstract and can only be described
using complex mathematics. T.C. O'Haver (1992) describes the problem as being one of
macroscopic vs. microscopic and discrete vs. continuous. Chemical reactions are
constantly in flux, a multitude of indivdual molecules gyrating about, bumping into
other molecules and changing. We can observe these changes on a macroscopic level;

153 163

modern atomic theory has allowed us to interpret these observations using the
microscopic paradigm. But it is very difficult to help the fledgling chemistry student
understand the connection between the observable and the reality. We frequently use
discrete mathematical expressions to help our students try to quantify very continuous
phenomenon. How many of us teach PV=nRT and equilibrium constants? Very impor-
tant and basic concepts, no doubt. As mathematical models go, these equations are
probably not bad approximations of reality, especially for the beginner. These equations
are, however, static. They define the chemical environment for only a fraction of a
moment. In other words, what are we doing to help our students always remember the
fluid, dynamic, continuous nature of chemical reactions?

Probably a better question is: what tools do we have at our disposal to make sure
kids see the macro and the micro, the discrete and the continuous? We certainly have
the overhead and the chalkboard. We can write down equations and balance them.
can do labs, try to help the students see the connection between the mathematical model
and the reaction. We can build models using ball-and-stick kits, trying to help our
students see the three-dimensionality of molecules. With the advent of the video disk,
students can now watch simulations of experiments conducted by others. All very useful
tools, indeed. What is missing is a tool that allows the students to collect data that more
closely approximates the dynamical nature of chemical systems and then allows the
students to evaluate that data in a manner that allows them to "see" inside that system
In order to really understand the workings of a chemical system, students need to be able
to manipulate the conditions or variables of that system, then interpret how that
manipulation changes the dynamics of the reaction.

The toolthe use of computational science coupled with scientific visualization
has been around for a number of years. Computational science can be defined as the use
of numerical and computer techniques to solve complex scientific problems. Numerical
techniques include the use of well-defined algorithms such as Newton's method for
finding the roots of an equation or the Runge-Kutta algorithm for solving ordinary
differential equations. Computer techniques include ideas such as the use of iteration,
recursion, or multiple processors to perform "number-crunching" calculations that are
difficult or impossible to do by hand-held calculators. Computational science offers
chemistry teachers and students with the capability to go beyond simple closed
analytical equations such as PV=nRT and into more complex equations such as van der
Weals equation of state for a gas, which are difficult to solve analytically. Many of the
numerical and computational techniques that are useful in chemistry require only that
the teacher/student have a background in algebra. Many interesting chemistry prob-
lems can be solved using the computational power found in most spreadsheets or with
some simple programming using BASIC or Pascal.

Why do we not use this tool? The bottom line is that computational science and
scientific visualization was not a topic typically taught to future chemistry teachers in
undergraduate chemistry programs; indeed, it has not become a central part of science
curriculums even now. A big reason for this is the rapidly changing nature of computer
technology. ETA Systems, in a slide presentation on supercomputing, uses an interest-
ing analogy in describing the amazing growth of computer technology over the past 20
years. It compares the technology of building airplanes to the technology of building
computers. The presentation suggests that if airplane technology had increased as
rapidly as that of computers, it would now be possible to build an aircraft that could fly
six million miles on 28 gallons with a passenger load of 100,000 people at a cost of $12.50

1 4

154

per person. The implication is that what was possible only to a few chemists five years
ago using the most expensive of supercomputers is now possible to the masses using
desktop personal computers. The unfortunate part of this is that the education and the
training to use this technology has not undergone the exponential growth that the
development of these new technologies has. The educational component is only
functioning well at the graduate school and post-doc level, while lagging years behind
at the graduate level and decades behind at the secondary level. The purpose of this
chapter, and this entire monograph, is to look at some of these new technologies an d how
they might be implemented at the secondary level. This specific chapterscientific
visualization in chemistrywill discuss the howl and whysof scientific visualization,
with a review of platforms (computer hardware and software) capable of supporting
scientific visualization.

Scientific visualization is a term that can be defined many ways. Generally
speaking, it is the use of computer graphics to process numerical data into two-
dimensional and three-dimensional visual images. Thedifficulties inherent in attempt-
ing to reveal patterns hidden in reams of numerical data is obvious. Visualization allows
the scientist to translate data into pictures, with the hope that patterns, inconsistencies,
and new questions will be generated by the images. The National Science Foundation,
in its publication "Visualization in Scientific Computing" (1987) and printed in a special
issue by the Association of Computing Machinery, states that visualization is a form of
communication that transcends application and technologicalboundaries. The report
suggests that visualization is a tool for discovery, understanding, communication, and
teaching. The monograph defines visualization as being a "tool for both interpreting
image data fed into a computer, and for generating images from complex multi-
dimensional data-sets." The monograph claims that "an estimated 50 percent of the
brain's neurons are associated with vision" and that "visualization in scientific comput-
ing aims to put that neurological machinery to work". It claims that in modern science,
the fundamental problem is the information-without-interpretation dilemma. In sup-
port of this claim, the issue states that "today's data sources are such fire hoses of
information that all we can do is gather and warehouse the numbers they generate."
Typical high-volume data sources include such things as supercomputers and medical
imaving technologies such as CAT scans and MRIs.

11 the field of chemistry, the advent of supercomputing technologies have allowed
chemists to delve deeper into the inner mysteries of atomic structure. Mathematical
equations such as the Schroedinger equation, once unsolvable by chemists, can now be
approximated using high-performance computers and complex numerical techniques.
Indeed, chemists have traditionally been the leaders in the use of computational science
and high-performance computers for solving grand questions. A number of research
chemists were interviewed for this chapter; without exception, all of them stressed the
importance of computational science as a fundamental tool for the research chemist.
None of them argued for the replacement of the wet lab by computers, but none argued
for the use of the wet lab without computers. Theimprovements in the field of computer.
aided chemistry have enabled chemists to design and study structures and reaction
mechanisms without having to master computers or quantum chemistry. These
improvements in ease of use make the feasibility of the use of these tools for beginning-
level students much higher.

Hirschy (1990) states that computational chemistry packages "now mimic a chem-

ist's usual way of conceptualizing databy visualizing it. Chemists traditionally

155

163

wir

explore ideas by sketching pictures and constructing models to communicate informa-
tion about molecular structure, orientation, and reaction pathways," She also states
that in designing a synthetic route to a desired compound, "seeing a molecule's
electronic structure is an essential part of what enables chemists to predict how a
substitution will affect a molecule's geometry and its underlying electronic structure."
These packages also have the capability of allowing chemistry teachers and students to
build molecules out of individual atoms or molecular fragments, manipulate them, and
calculate molecular properties such as electron densities, molecular orbitals, ionization
potentials, and electrostatic potentials.

Getting Started in Scientific Visualization in Chemistry

As mentioned in the Introduction, scientific visualization in chemistry is a relatively
new topic even in the professional community. Little work has been done in trying to
incorporate these technologies into the secondary science classroom. One of the hopes
of this series is that it will serve to entice, motivate, excite, and otherwise encourage
secondary science teachers to consider the use of new technologies in their teaching.
From the perspective of this author, a classically-trained chemist with no background
in computational chemistry, visualization or formal training in computer science,
participation in a nationwide contest has revealed a potential gold mine of opportunities
for improving the teaching of chemistry students at the secondary level.

The SuperQuest Supercomputing Challenge

The SuperQuest Supercomputing Challenge is a national scientific problem-solving
competition sponsored by the National Science Foundation, the IBM Corporation, and
the Cornell National Supercomputer Facility (CNSF). The purpose of this contest is to
provide students with the opportunity to use high-performance supercomputers to solve
relevant and interesting science problems. Students form teams of three or four
students with a teacher-coach and develop individual or team proposals. Teams who
score the highest are invited to spend three weeks at one of the national supercomputing
facilities learning about computational science, high-performance computers, and
visualization of data. Students then return to their home schools with state-of-the art
scientific workstation computers (complete with graphics terminals), access to the
national electronic research network (Internet) and access to the supercomputer facility
for one year.

During the academic year, students finish their projects and submit the results in
hopes of winning scholarship awards. Blair High School's experiences and successes in
the SuperQuest contest have changed the way we think about teaching science. Our
curriculum has been modified to include formal courses in Computational Methods,
Modeling and Simulation, and Mathematical Physics. Other courses, including intro-
ductory chemistry, have been modified to make use of the substantial data and
computational resources available from the Internet and from the supercomputing
facilities. Our computer science hardware has increased dramatically as a result of
winning teams over a three-year period. We now have several multiuser machines in
the building complete with sophisticated graphics capabilities; these facilities rival
those found at many colleges, universities and research institutions. The outlay of funds

tss

for this equipment has been virtually zero, since all the equipment is awarded
permanently to the school for Super Quest finalist teams. Coupled with the machines
found in our regular computer lab (Macintoshes and IBMs), we have the computational
facilities at our disposal to allow the students to investigate interesting problems.

Several short examples of possible research are illustrative. One student is doing a
three-dimensional, time-driven simulation of dissolved oxygen levels in a section of the
Potomac River. Her simulation investigates thechanges that occur at various levels and
places in the river following discharge from an upstream pollution source. Once the
simulation and the data are complete, the results will be compared with actual data
collected from the literature. The mathematical equation being used to run the
simulation is a relatively simple algebraic calculation that can be easily solved by hand
for a single place in the river at a specific instance. The student researcher is able to
make use of the number-crunching capabilities of the computer to generate a large
amount of data for multiple places over an extended period of time. A graphical
visualization of the data over time will be the final part of this research. This
visualization will show changing values in dissolved oxygen in a three-dimensional,
color-coded fashion. Another student is looking at the formation of soap bubbles and
their geometry. Using complex mathematics, hehas been able to develop a visualization
of the formation of soap bubbles that allows him to introduce changes in the input
parameters to investigate the surface geometries of different bubble formations. The
computer model generates the data; thevisualization software allows him to look at the
data results, communicate those results, and develop more interesting questions to be
investigated. While this student has the mathematical abilities to create such a model,
the success of his research comes primarily from access to the newest of technologies,
coupled with the drive and desire to learn and utilize these technologies.

Incorporating Computational Science and Scientific Visualisation into the
Chemistry Classroom

There are several key issues that must be addressed by the chemistry teacher
interested in using visualization techniques for chemistry students:

1. What is the concept that I want to teach? Does the teaching of that concept lend itself

to a multi-dimensional portrayal (such as electron orbitals)? Do I want to be able to
show the dynamic changes that occur over time or over the course of some event, such

as the effect of volume changes under increasing temp or pressure?
2. What are my data sources? Can the data be generated from a laboratory experiment,

spreadsheet, computer program, or commercial software product? Are there oppor-
tunities for collecting large amounts of data from long-term experiments or from
multiple groups? Are there data sources from the literature or computer databases
that would be worth investigating (such as the Brookhaven Protein Data Bank, a
commercial database of protein structures)?

3. What computational platforms are available? Possible platforms include personal
computers such as IBM PS/2's or Macintosh computers, larger machines such as a
VAX minicomputer or an IBM RS-6000 workstation with graphics terminals, or
access to a supercomputing center. As mentioned previously, one of the most exciting
developments of recent times is the availability of sophisticated software support for
personal desktop computers. Specific exampleswill be discussed later in the chapter.

157

4. To what extent do I want the student to be able to manipulate the conditions of the
visualization? Options include a range from no manipulation ("canned" software) to
complete control of data being visualized.

One of the hopes of this author is that science teachers, chemistry teachers in
particular, will begin to develop materials that make use of newer computer technolo-
gies for use in the classroom, and begin to share these materials throught the traditional
professional channels such as publication and presentation at national scientific
conferences. Based on interviews with practicing research chemists, participation in
science contests with students, and a thorough reading of the literature, this author is
convinced that the tools and technology are accessible and understandable to high
school chemistry students, and that they will generate a much better understanding of
the nature of chemical reactions and to generate substantial excitement about chemis
try and chemical research.

Learning How to Play the Game: A Baseball Analogy

Many of us have played baseball or other organized sport at some time in our lives.
As young children, we knew and understood the steps from Little League to the varsity
team at our high school, on to college baseball. Then, if we were good enough, a chance
to play minor league ball, a stepping stone to the major leagues. Hopefully, if our team
was good enough, we might win the World Series! The idea was that to play in the big
leagues, we had to start at the bottom with the fundamentals, moving steadily to more
sophisticated skills and techniques. The analogy to the use of computational science and
scientific visualization in science and mathematics teaching is identical. Our goal as
teachers is to prepare our students to succeed in the big leagues, the world of scientific
research. Some of our students will win the "World Series" by discovering some
significant new finding or by winning a Nobel Prize. But the path starts with us; we
teach the basics, and hopefully help our students move on to higher levels of scientific
research and problemsolving. It is important for us to realize that the fundamental
skills in demand now and in the next 50 years are changing; the use of computational
technologies has become as important as being able to titrate an acid. The baseball
analogy also applies to teachers.

One of the exciting things about the use of visualization in chemistry teaching is the
newness of it, a sort of sense of breaking new ground. We, as well as our students, need
to begin with the basics, slowly working our way up to higher levels of sophistication.
It's a journey that weteachers and studentscan take together, all the while
modeling the learning process for our students. In the following section, a variety of tools
for scientific visualization are described. Needless to say, it is difficult and not necessary
to describe all of the products available on the market today. A compendium of software
products available is included in the Appendix.

Little League: The Basics

We've all done scientific visualization; we've just never called it that. The process
of graphing data on an xi coordinate system is an example of scientific visualization in
its most basic form. The concept here and with the most sophisticated systems is

158

166

basically the same: to take numerical data and be able to determine patterns, make
generalizations, and generate more questions. Data that follows a linear growth pattern
represents very different data from nonlinear data.

Many science teachers require their students to generate graphs, be it by hand or
by the use of a computer software package. Modern spreadsheets, available on personal
computers, not only have the ability to generate data easily and to perform sophisticated
calculations on data, but also are increasingly impressive in their graphical represen-
tation of data. Software such as Microsoft Excel and Cricket Graph can generate high-
quality two-dimensional graphs of data. Coupled with built-in functions, most spread-
sheets can be useful in performing some of the tedious arithmatic/computational work.
Data can then be plotted or "visualized" using the built-in graphics generator. Consider
a discussion of bonding and antibonding orbitals when discussing atomic structure.
Using a technique from computational chemistry known as linearcombination of atomic
orbitals (LCAO), it is possible to numerically approximate the wavefunction for a
diatomic molecule. Figure 1 shows a simple spreadsheet used to generate the data.
Figure 2 shows a simple two-dimensional plot of the data. Students can make predic-
tions about the internuclear distance and other variables affecting the system. Gener-
ation of graphical representations of that data makes interpretation easier and more
revealing.

LINEAR COMBINATION OF ATOMIC ORBITALS FOR HYDROGEN
0.529 =BOHR RADIUS
0.7071 =1/SORT 2 Hydrogen Molecular Orbitals

1.4664 =1/SQRT (AAWPI)

Internuclear Dist.= 0.8

ATOMIC ORBITALS

Radial From A -1.6 .1 4 .1.2 -1 -0.8 -0 6 .0.4

Racist From B -2 4 -2.2 -2 -18 -1.6 -1.4 -1.2

Psi Is A 0.071 0.104 (.152 0.221 0.323 0.472 0.6888

Psi Is B 0.016 0.023 0.033 0.049 0.071 0.104 0.152

Boning 0 061 0 061 0 131 0.191 0.279 0.407 0.594

Antiboncing 0 039 0.039 0.084 0.122 0.178 0.260 0.380

Figure 1. A spreadsheet of Linear Combination of Atomic Orbitals (LCAO) for hydrogen

159
1v5

1.58

1.30

1.04

).78

).52

28
).00

).28

).52

).78

LCAO -MOs

I I I I I I 1 1 1 1 1 1 1 1 I I I I I I I I I

1.8 -1.2-1-0.8 -0.4 0 0.20.40.80.8 1 1.21.41.81.8 2 2.22.42.8 3
Distance

Bondng oAntibonding

Figure 2. Graph of hydrogen bonding, showing bonding and antibonding orbitals

A second beginning place for teachers and students is through the use of controlled
simulation software. These are public domain (free) and commercial software products
that present the student with a menu of simulations or animations. The advantage of
these products is that they are easy to use, for both student and teacher. The
disadvantage is that they usually offer limited opportunity (if any) for the student to
modify the situation to generate answers to "what -if' questions. If the concept of interest
is not one of the menu choices, then the student has to use other means to answer that
question. An example of this type of software is Organic Reaction Mechanisms,
published by Falcon Software. Designed to teach organic chemistry, the software
presents the student with a fairly complete list of typical organic reactions, such as
addition, substraction, halogenation, Diels-Alder, and others. The student can look at
examples of these reactions, such as the bromination of an alkene. The software presents
the student with an overall reaction mechanism, then with the opportunity to run an
animation of the reaction. During the animation, which can be run at three different
speeds, the program shows parts of the reactants leaving, changing polarity, and
combining with other fragments to form products. A detailed textual description of what
is occu ring accompanies the animation. The student can stop and re-start the animation
at any time. Some of the reactions are accompanied by an inset window that graphs the
reaction energetics in a "real-time" fashion while the animation is happening. Figure 3
shows a frame from the halogenation of benzene. Notice the reaction energetics graph
on the right of the screen.

160

1

0

TOC

Lose of e proton from the pootodionv1 cotton 12:20:29 AM

intermediate to yield bromobonzeno.

Figure 3. Screen shot of an animation showing the halogenation of benzene

This type of software demonstrates a much more effective mechanism for helping
the student to understand reaction mechanics than the traditional pencil-and-paper
drawing or trying to build ball-and-stick models. This particular software also shows the
changes in the stereochemistry as the reagents begin to react. It is a simple program,
but a substantial improvement over more commonly used methods. Beginning attempts
at Blair to use this particular software in teaching beginning organic to introductory
chemistry students has been rewarding, both for teacher and student.

A third starting place for scientific visualization is with the use of "limited-
capability" software. This is software that allows the student to input information about
a chemical system and have the software generate some information about that system.
Many of these programs are inexpensive or free, and run on avariety of platforms. An
example of this type of software is Molecular Editor, for the Macintosh computer. This
software presents the student with a "palette" of common atoms, bonds, and other
structures. The student can build a graphical model of simple or complex molecules by
connecting the appropriate parts, much the same as he or she might do with molecular
model kits. As with the kits, the student can rotate the molecule three-dimensionally
around any of the three axes. Additionally, the student can query the software to
generate an information grid about the molecule, showing bond angles, torsion angles,
and other types of molecular information. Figure 4 shows amodel of a protein, using the
ball-and- stick rtpresentation (wire-frame and space-filling representations are other
options). The insert window shows a typical drawing palette that the user sees. The user

can select any of the items from the palette for use in generating a visualization of a
molecule. The program will also generate stereoscopic images of the generated model,
if you are able to focus the images into a stereo view (I have never been able to do this!).
Software of this type is not only fun to use, but it is informative to the student while being
easy to master.

6 File Edit Tools Font Style Color Mode 12:30:39 AM

Figure 4. A balland stick model of a protein. A portion of the menu/drawing palette is
shown on the right.

Making the High School Varsity Team: Adding on to Basic Skills

One of the most important improvements in computer technology has been in the
numerical processing capabilities of personal computers. Integrated circuit technology
has improved to the point that it is possible to put powerful"chips" into small, (relatively)
inexpensive desktop computers. Hence most computers come packaged with powerful
mathematical engines that not only can perform complex numerical analyses but also
generate or process data rapidly. The software technology, or the instructions to tell the
hardware what to do, has not increased as rapidly, but useful and inexpensive packages
are springing onto the market everyday. The problem we have, which is a good problem
to have, is that so many new software products are coming onto the market that it is
difficult to keep up with them.

Once the teacher and students are comfortable with the use of spreadsheets,
limitedcapability packages and menu driven animation programs, the use of interac-
tive simulation software and equation solvers is a logical next step. Both of these
platforms offer the student a "blank slate" upon which to design a model or a simulation

162

1 't

(Print) (Product)

of a chemical phenomenon. Both contain impressive mathematical engines with which
to generate and visualize data. One of the nice features about this level ofsoftware is that
the mathematics involved is often seen as a "black-box" to the student; in other words,
the student doesn't know (unless she wants to) that the engine is doing a fourthorder
RungeKutta integration of an ordinary differential equation or that the system is
generating its answers using a rulebased algorithm based on artificial intelligence
principles. Most of these programs allow the student tothink about and concentrate on
the variables of the system. Interactive simulation software is the class of products that
allow a student to build a simple model of a chemical system, use the simulation to
generate data, and then add more information or variables to the model.

Two different examples of interactive software are indicative of this category.
Returning to organic chemistry, an example is the Beaker simulator published by
Brooks/Cole Publishing Company. Beaker is a simulator that allows the student to solve
general classes of problems. Students can draw organic molecules using the drawing
tools, or by typing in the correct IUPAC name. The software can help the student to view
the molecule in a number of different ways, includingline segments, Kekule structures,
and Lewis structures. The strength of the program, however, lies in the ability of the
program to perform reactions based on the reactants that the student puts into the
"beaker." The software, which is actually an artificialintelligence expert system, knows
the "rules" for solving general classes of organic reactions. It will not be able to solve
every possible combination of reactants, but it knows enough to be a solid teaching tool

for young chemists. The visualization component, in addition to viewing structures, is
that it will show all of the steps of the reaction mechanism, including multiple pathways
if they exist. The student can change the reaction conditions, such as temperature, to
see the effect on the reaction. Figure 5 shows a snapshot of a window in Beaker, in which

an alkene is reacted with sulfuric acid and water to form an alcohol.

6 File Edit Redraw Struct React Analysis Data 12:28:08 AM

0

\11 Man& \."

Step *2 of 4 is Electrophilic Addition

Cops Prow 011=31 Cancel

Figure 5. Screen shot from Beaker, showing reaction of ethane with sulfuric acid and water

163

Another type of interactive simulation software is STELLA, an icon-based simula-
tion language. With STELLA, students can develop time-driven models by connecting
different icons based on their relationship to each other. Figure 6 shows a sample model
that simulates the decomposition of nitrous oxide into two components. By changing the
rate constants, temperature or concentration of the reactant, the student can study the
effects of those variables on the kinetics of the reaction.

Poems 205-es

N2115-tencentretion

Inc Cant

Tomporelin

isteCOOSIIINt

Oat

NO2-Cmmestrstlen02-Concentrello

02.1er_N2115 N112-Per-14295

Figure 6. STELLA kinetics model for decomposition of nitrous oxide

One of the interesting and useful features of this software is that the software will
graph several or all of the variables on a time graph while the simulation is running, so
students can see changes while they occur. Figure 7 shows a graph generated for the
kinetics model shown in Figure 6.

1 Naos-c. mandreti.s 2 1402-Cosecestretlew 2 ez_cftesetretfin

4.011

LOSS

2.0011

LOSS

Ili

.

6. 4.2311 12.511 111.7$11 25.110

4/11/10 1:10:38 PM

Figure 7. STELLA kinetics graph showing decomposition

164

1114

The mathematical engine underlying this package is the use of Euler's method or

Runge-Kutta techniques for solving ordinary differential equations. The mathematics

are transparent to the student unless the student wants to study the mathematics.

Students at Blair High School learn STELLA in the ninth grade, and are able to use the

simulation software for a number of projects in physics, chemistry, and social studies.

As STELLA also can generate a table of data which can be imported into a spreadsheet

or other software package, faculty at Blair are looking at ways to let STELLA generate

large amounts of data for visualization with more sophisticated graphics packages.

STELLA, while intended to be used in educational institutions, is being used as a

professional scientific research tool by a number of organizations, primarily in the

environmental field. Students can develop simple models, then easily add on to make

complex models as they begin to better understand the phenomenon being investigated.

In our participation in the SuperQuest contest, we have used STELLA as a prototyping

language to determine how well the student's model will work on a larger platform such

as a supercomputer.
Equationsolvers are a new type of software for use in computational chemistry and

computational science. Equation-solvers are programs which allow students to enter an

algebraic equation such as PV=nRT, and then enter values for the known variables. The

program will then perform the algebraic manipulation necessary to solve for the

unknown variable. This differs from spreadsheets, in which the user must know prior

to creating the spreadsheet which variable of the equation will be unknown. A simple

equation-solver is TKSolver Plus, which comes equipped with graphing and table-

generation capabilities. Figure 8 shows a sample screen from a TKSolver model of

quantum mechanics, looking at the wavefunctions for a hydrogren atom.

File Edit Commands Settings Windows 1:45:04 AM

Variables

hulas

Units

glillists

Functions

Plots

Tables

Forests

112

!met

1/1

Schroedingers
1939K U

Rules
Buis
ftm* 4-stos Now Functions / Radial Probability Densities***

ls Orbital

Ills 2*a'-1.5EXP(-r/a)

NP is 4P I Oor'24011111-2 " Is radial pre* I I I ty dens! ty
2s Orbital

Ms (1/SORT(11) P4--1.5*(2-(r/e))*EXP(-r/(24))
IIP2s 4*Pl(),r'29I2s`2

2p Orbital
, (1/50AT(24))os'-1.5*(r/a)*EXP(-r/(2,4))

ri

mo.

Variables
Usma MILL Bali Gemormi l*1

Als .00519012 I
52.9

5.29E -11 r
APIs 9.502E-25
Alls .00193711

AP2s 1.141111-25

5.305E-44

re.

Figure 8. Screen shot of TKSolver Plus model of hydrogen wavefunctions

165

Figure 9 shows the graph generated for this model. TKSolver has an iterative solver as
the mathematical engine; students can enter lists of data, and the software evaluates
each data point until the calculations are completed. Output is written to an output list
which can be graphed by the software or exported to another package. Figure 9 shows
the graph of the data generated by the mathematical model.

Radial Probability for Is Hydrogen stem

Distance from the nucleus In pe

Figure 9. Graph from TKSolver Plus model, showing probability as a function of
distance from the nucleus

TKSolver is a superb introductory equation-solverfor students. The real excitement
of equation-solvers, however, is in the form of packages such as Mathematica and
Theorist. Both of these are very powerful mathematical tools for building mathematical
models of physical events. In addition to their number-crunching abilities, both
packages come bundled with two- and three- dimensional graphics capabilities and the
abilitiy to create animations of events. Figure 10 shows a graphical representation of an
electron orbital using Theorist, generated using the equation shown above the render-
ing.

A sample application in Mathematica would be the graphical creation of a box into
which spheres representing molecules are placed. Figure 11 shows a sample frame from
the animation. The user can manipulate the variables of the equation to show the three-
dimensional behavior of the molecules as the temperature is raised or the pressure is
reduced.

Blair faculty have used Mathematica for students who are in their first course in
calculus; models are currently being built for use with advanced chemistry students in
the area of atomic structure, kinetics, and thermodynamics. Mathematics was written
with the intention of being a mathematical workbench for the practicing chemist,
physicist, or mathematician. It is possible to use Mathematica without completely
understanding the calculations being performed, as many calculations are established
using built-in functions. Mathematics is an affordable package that runs on desktop
personal computers. Several textbooks currently on the market provide good introduc-

1'16
166

tions to the use of this software and ideas and applications for teaching science and
mathematics.

'electron Orbital page la

Electron Orbital
13 [cos(6)]2- 112

2)

Figure le. Model of electron orbitals using an equation solver to compute
Schrodinger's equation

Graduating to College: Putting the basics to Work

A point that needs to be emphasized is that the tools described so far are very useful

tools that should be able to support many projects that teachers or students might want

to undertake. Many other packges, such as Hypercard for the Macintosh, also offer
impressive possibilities for scientific visualization in the classroom. As mentioned in the
introduction, there are many products not described here that could be useful for
helping students to learn the concepts of computational science and scientific visualiza-

tion.
There are two other types of visualization packages, however, that require more

advanced skills for the user. One of these packages is that data visualization software
which has been developed to run on personal computers but using large volumes of data

generally collected from larger platforms. These packages have been designed to offer
visualization capabilities to researchers who want to be able to look at their data while

at their desktop computer. These packages, however, can be used successfully with

secondary students.
Another type of package in chemistry is the molecular modeling software that has

as its origin the programs found on supercomputers. These packages allow the student

to perform sophisticated research or for the teacher to provide students with the

167 1

Ideal Gas

Ideal Gas
by Theodore W. Gray

This Notebook contains an animation of some particles bouncing about
in a box. The example shows what would happen if, for example, a
balloon containing some gas molecules was burst in a vacuum.

Example

To start the animation, select the rightmost bracket and press WV
This animation looks best run cyclically on a black-and-white screen.

This example was generated with the following code, which uses
functions defined in the Implementation section below.

startingPoint TabloNCRandos(RoPI, (-1, 1)),
Randos(Roal, (-2, 2))), (Random(Roal, (-1, 1)),
Randem(Real, (-2, 2))), (Randon(Roal, (-1, I)),
Random(Real, (-2, 2)))), (20));

walls ((-12, 12), (-12, 12), (-12, 12));

SouncePoint3(stastingPoint, walls, 100)

Implementation

Figure 11. Frame from ideal gas simulation/animation using Mathematica

opportunity to delve deeply into the mysteries of atomic structure and reaction
mechanisms. The most impressive package of data visualization software is the
Scientific Visualization Software Suite developed by the National Center for
Supercomputing Applications (NCSA). One of the best things about this package of
software tools is that it is free; descriptions of the software anu how to obtain it are found
in Appendix B. This software is being used at the high school chemistry level by teachers
working in conjunction with NCSA; one of the chapters of this monograph describes
their work with simulating electron densities of lithium hydride molecules.

168

Components of the package such as NCSA Image can be used to display and animate
scientific images. The user can easily change the colors of the image by selecting the
desired palette. Animation is accomplished by developing frames, placing them in the
same area of the disk, and selecting the animation option. Users can change the speed
of the animation easily. Without a doubt, this collection of software tools is one of the
most impressive on the market. The collection also included versions that can be run on
larger platforms such as the Sun workstation or the X Window system for IBM
platforms. The obvious advantage to this is that the student can learn the basics with
relatively small data sets using the desktop version, then "graduate" to the more
powerful versions when they are able to access a high-performance computer and
graphics terminal. The IBM X Window system is the scientific workstation that was
awarded by IBM to the 1992 winning SuperQuest team; other high schools throughout
the country are getting time on these machines through cooperative efforts with local
universitites or research institutions. The point is that it is becoming more common-
place for secondary science students to have the opportunity to use some of the more
powerful scientific computing tools available to research scientists. Blair faculty are
beginning to develop applications for the NCSA software suite with the desktop version
and with the X Window version.

Molecular modeling software is abundant on the market; some smaller versions
have already been described. Simpler packages willallow students to design molecules,
perhaps rotate them or view them stereoscopically. There are now molecular modeling
packages available for desktop computers that allow students to design and visualize
molecules, and also to perform supercomputer-like calculations on the molecules. A
c:assic example of a powerful modeling system is Chem3D, by Cambridge Scientific
Computing. Chem3D will create single views, multipleviews from different angles, and
movies. The system is capable of handling large molecules, a feature not usually found
with less-powerful versions. The key difference in this package is the ability of Chem3D
to perform molecular mechanic calculations, such as computing bond stretching
parameters, pi orbitals using self-consistent field theory (SCF), charge-dipole interac-
tion terms, and other standard measurements. Chem3D can create connection tables or
Cartesian coordinate files. A sample activity using Chem3D being used at the Univer-
sity of Maryland (O'Haver, 1992) is a lab which asks the student to answer this question
using the graphics interface and some of the computational powers of the software: The
boiling point of certain halogen-substitituted organiccompounds varies according to the
identity of the halogen. Does this variation correlate best with the electronegativity, the
polarizability, or the sheer size of the halogen atom? This activitiy uses a variety of
computational and graphics tools, including a three-dimensional version of the periodic

table called "MacMendeelev", Chem3D, and Cricket graph.

Moving on to the Minor Leagues: Visualisation on Large Platforms

One of the most important things to understand about visualization is the strength
of the software available for personal desktop computers. Not only do many of them come

complete with superb graphics capabilities or the ability to animate data, but the
mathematical engines are often first-class. We have found, however, that students are
highly motivated by the opportunity to work on largerplatforms such as a supercomputer

or a scientific workstation. The success of SuperQuest has been that students are using
the same computational tools as research scientists. Students are also attracted to the

169 I 't

highresolution graphics capabilities of the terminals connected to these machines. This
section will profile some of the visualization tools that are available on larger platforms,
such as multi-user workstations and supercomputers such as the CRAY and IBM ES/
3090.

One of the most impressive examples of such a system is the CAChe (Computer-
Aided Chemistry) package developed by CAChe Scientific, a subsidiary of Tektronix.
This system has been included under this category of larger platforms because, even
though it does run on higher model Macintosh computers, it does require special
hardware in the form of a RISC coprocessor card, trackball, and special display terminal.
Color Print 2 shows a stereoscopic view of the Vitamin B12 molecule. Using special
glasses combined with a Tektronix monitor, the user is able to see a true 3-D view of the
molecule.

This system can perform a wide variety of computational chemistry calculations on
molecules, including MOPAC, Extended Huckel, ZINDO, and MM2. The software can
patch to ab initio and semiempirical packages located on supercomputers, using the
data generated by those platforms to look at the interactions of the molecules. CAChe
can take standard file formats created by smaller systems such as Chem3D to generate
data sets. The system allows the student/researcher to predict and visualize a number
of chemical properties, such as electrophilicity, bond order, reaction pathways, activa-
tion energies, IFt/UV/Vis spectra, solubility, heats of reaction, and stability. The user
interface is Macintosh-like with pulldown menus. Color Print 3 shows a model of
chromium, molybdenum, and tungsten hexacarbonyls with MM2 calculations on atom
distances.

In addition to packages such as CACHe, which are complete molecular modeling
packages, there are software packages which have the sole purpose of providing
sophisticated visualization support. All of these packages run on larger platforms, such
as scientific workstations or supercomputers. FieldView, produced by Intelligent Light,
is an example of this type of software. FieldView is used to visualize large data sets of
fluid dynamics problems, which are three-dimensional and timedependent in nature.
Color Print 4 shows a screen shot of a NASA AMES data set of the space shuttle,
illustrating pressure, velocity and Mach number using contouring, vector field, iso-
surface and cutting plane techniques. The platforms required to run such a package
include the IBM RS 6000 series, SUN Workstations, and Silicon Graphics workstations.
Students who are finalists in the SuperQuest competition are often presented with the
opportunity and training to use some of these sophisticated graphics packages during
the summer institute. High-quality graphics packages are usually included with the
scientific workstations that each schcol wins if they become a finalist team.

The Major Leagues: Visualisation on Supercomputers

Needless to say, there are very few high schools (one that I know of) that house a
supercomputer in their facility. For many teachers, the possibility of being able to access
and utilize a supercomputer is remote. Many supercomputer centers and universitities,
however, are encouraged by the results of programs such as SuperQuest and are making
their machines available to local schools. As a result, it is not unfeasible fora chemistry
teacher to be able to use some of the capabilities that are possible only on these large
computers.

Two types of software packages that require supercomputing power are briefly
described in this section. The first is UniChem, a complete molecular modeling package
found on the Cray supercomputer, and AVS, a state-ofthe-art visualization package
also developed for the Cray.212 UniChem is a package that allows the user to perform
multiple molecular modeling and simulation techniques in a single integrated environ-
ment. UniChem is used for a variety of purposes, such as drug design, environmental
studies, investigation of polymers, the study of agrochemicals, and investigations in
material science. This package can incorporate many of the capabilities of most of the
quantum chemistry codes, such as GAMESS, Gaussian, CADPAC, and MND090. With
a built-in visualization system, this software allows the researcher to immediately show

the generated data in a visual format.
During this school year, a full-day workshop was taught by a computational chemist

from Cray to a group of high school teachers. After a morning of orientation on
computational chemistry, the teachers were able to use the package during afternoon
lab sessions to create and investigate a variety of chemical modecu les. The teachers were
able in a short period of time to investigate how geometries of molecules effect their
reactions with other substances. UniChem, like manyother packages, uses a Macintosh-
like interface, so that the user does not have toknow a programming language or be able
to use a text editor to use the software. In a wrap-up session at the end of the workshop,
the teachers were able to list several ideas for projects which might use the capabilities
they had learned during the day. Virtually all agreed that the use of computational
science an d v isualization was well-worth investigating as a potential teaching tool at the
high school level.

There are a wide variety of visualization software packages available on
supercomputers. Several examples are Stardent's Application Visualization System
(AVS) and a visualization package by Wavefront. Both of these products have fairly high
learning curves, and are usually operated by professional visualization technologists.
The general scenario for the use of these products is that a researcher will generate data
using a supercomputer, then meet with the visualizer to discuss what the researcher
wants to see. The visualizer then beginsthe complex task of applying the software to the
data set. In a collaborative manner, the scientist and visualizer continue the editing
process until the researcher has a finished visualization product. Many times theresults
are produced in a videotape format, which the researcher can use at professional
meetings. While this type of visualization may seem to be unaccessible to secondary
students, we have had a number of students from past SuperQuest competitions utilize
this service. Once they had generated some data, they met with the Wavefront
technicians at Cornell to produce short-segment videotapes. The students were able to
use these videotapes as a part of their final presentations at SuperQuest, as well as in

other scientific contests such as Westinghouse and the International Science Fair.
As stated above, many of the supercomputer centers that we have worked with at

Blair, such as Cornell and NCSA, have been very willing to work with students on
computational projects Another supercomputer center in North Carolina, which
sponsors its own state-wide SuperQuest, has recently been awarded a contract to
become the international visualization center using the AVS software. This will be a
wonderful resource for secondary students in that state.

171

Visualizing the Future

Incorporating computational science and visualization into the secondary science
class requires resources and, more importantly, time. Both are things which are in short
supply in the lives of most high school teachers. The use of computational science also
requires a change in mindset about how we teach chemistry and what is important for
future chemists.

I became convinced of the need to re-think my teaching through Super Quest, and
the many contacts I made with practicing chemists through the SuperQuest experience.
I was also convinced with the initial success I had in using some of the tools described
above with my students at Blair, beginning with the ninth-graders. We've been
fortunate with our success with SuperQuest; our victories have brought state-of-the-art
hardware into our building. But the majority of the work we have done to date have
utilized our desktop computers and free or inexpensive software. The use of simulation
software with its built-in visualization functions has made it much easier to help my
students see the dynamic nature of chemical systems. I feel much less constrained by
the limitations of the lab, in terms of time, safety, and expense. While not neglecting the
lab, we've been able to have the students look at systems that would not be possible in
the lab. We still (occasionally) use videos of chemists doing demonstrations, but they are
not as effective as simulations that the students can manipulate themselves.

Our use of computational science at Blair was experimental at first, but it is now a
solid component of almost all of our science and math courses. We continue to develop
r 3W activities and modules. We are hoping that as more schools become involved in
computational science and visualization that they will develop activities and share them
with others. Cornell University is making strong efforts to help secondary te. cliers
become involved in this area (using many of the materials developed at Blair); the Non h
Carolina Supercomputer Center and NCSA are similarly involved. Contacting these
centers is certainly a good way to begin your efforts in learning about computational
science and visualization. In conclusion, a statement by Wolff (1991, p.236) summarizes
where science is going as we head into the next century:

My own belief is that scientific visualization is the starting point for a major
paradigm shift in the way that people in all areas deal with large amounts of
information. Multimedia technologies form a natural bridge between the
compute- and data-intensive world of the researcher and the video-oriented
presentation technologies that are commonplace in classrooms i..nd scientific
meetings. In the not-too-distant future, researchers and teachers will deal with
images and animations as easily as they now handle text-based documents in
word processors.

References

Boyd, Donald (1992). Reviews in computational chemistry, New York, NY: VCH Publishers.
Hirschy, L. (1990). Computer package puts chemistry at your fingertips. Researchand Development.

Cahners Publishing Company.
Nations! Science Foundation (1987). Visualization in scientific computing. Computer Graphics,

21(6).
O'Haver, T. (1992). Personal communication, March 10, 1992.

1s2

172

Steinhorn, L. (1992). Whiz Kids in America. Washington, DC: Washington Post.
Wolff, R. (1991, May/June). Visualization as a tool for physics education. Computers in Physics,

pp. 218-286.

Appendix

Software for Computational Chemistry and Visualization

Most of these listings come from Boyd (1992). Many of these vandors will offer
helpful ideas on getting started. It is also valua)1e to consult the Journal of Chemical
Education computer section.

PERSONAL COMPUTERS: Apple Macintosh, IBM PC/PS2, IBM
PC/AT/XT

STELLA
High Performance Systems
13 Dartmouth College Highway
Lyme, NH 03768

Simulation language for the Macintosh, based on manipulation of icons. Mathemat
ical engine solves differential equations based on a timedriven simulation

TKSOLVER Plus is available through the American Chemical Society

Mathematica and Theorist are commercial products available through most retail
software outlets.

MM2, CNINDO/D, FORTICON8, MNDO, HAM/3, POLYATOM, MOPAC, DRAW,

MOLVIEW, NAMOD, etc.

Quantum Chemistry Program Exchange (QCPE)
Department of Chemistry
Indiana University
Bloomington, IN 47405
812.855-4784

Extensive catalog of programs for quantum mechanics, molecular mechanics, and
molecular graphics. QCPE being academically affiliated provides software and
documentation at nominal cost. PC and Mac II.

PCMODEL
Serena Software
Dr. Kevin E. Gilbert
P.O. Box 3076

173
1

Bloominton, IN 47402
812-333.0823

Structure building, manipulation, enemy minimization by MMX, stick and dot
surface display, derived from MODEL, handles inorganic as well as organic
molecules, also models transition states. Companion MOPAC 4.0 program. Mac II.
IBM PC/XT/AT, Silicon Graphics IRIS, Apollo versions.

CHEM3D PLUS
Cambridge Scientific Computing, Inc.
Dr. Stuart Rubenstein
875 Massachusetts Avenue, Suite 41
Cambridge, MA 02139
617.491-6862

Structure building, manipulation, simple force field and MM2 energy minimization,
ball-and-stick and space-filling display. Mac H.

NITRO
Tripos Associates
1699 Hanley Road
St. Louis, MO 63144
800. 323-2960

Graphics processor for interfacing to SYBL on a VAX. Mac ii, PC versions. Alchemy
does structure building, manipulation, SYBYL energy minimization, stick or space-
filling display on a PC. Alchemy III interfaces to Chemical Abstracts Service
registry files.

CHEMCAD +
C_Graph Software, Inc.
P.O. Box 5641
Austin, TX 78763
512. 459-3562

Structure building, manipulation, van der Mutts and electrostatic energy minimi-
zation by MM2 and MNDO, stick or ball-and-stick display, report generation,
interface to Chem Fill. PC. Also Macintosh versions of MM2+ and MNDO+.

MOLIDEA
CompuDrug USA, Inc.
P.O. Box 202078
Austin, TX 78720
800. 877-0880

174

Structure building, manipulation, van der Wash and electrostatic energy minimi-
zation, CNDO/2 and other simple MO calculations, interfaces to packages for log P
and statistics, stick, space-filling, or dot surface display. QSAR and expert systems
program. PC.

CAMSEQ/M
Weintraub Software Associates, Inc.
P.O. Box 42577
Cincinnati, OH 45242

Structure building, manipulation, rigid conformational searching with interface to
CAMSEQ/PC, stick, ball-and-stick, and space-filling display. PC.

MI CROCHEM
Chem lab, Inc.
1780 Wilson Drive
Lake Forest, IL 60045
312.996-4816

Structure building, manipulation, energy minimization of organic, inorganic, and
polymer units, stick, ball-and-stick, and space-filling display, QSAR Craig plots.

Mac.

DESKTOP MOLECULAR MODELLER
Oxford Electronic Publishing
Oxford University Press
Walton Street
Oxford, OX2 6DP
U.K.
44. 865-56767 x4278

Structure building, manipulation, energy minimization, stick, ball-and-stick,
space-filling display. PC.

CACHe
CACHe Group
Tektronix, Inc.
P.O. Box 500, Mail Stop 13.400
Beaverton, OR 97077
503. 627-3737

Structure building, manipulation, MM2 energy minimization, stick, ball-and-stick,
or space-filling display, extended Huckel molecular orbital, electron densitities, and
electrostatic maps, 3D viewing. Tektronix enhanced Mac II.

1s0
175

Minicomputers, Supercomputers, Workstations

MM2, FORTICON, CNINDO, CNDO/S, PCILO3, MOPAC, AMPAC, MNDOC,
GAUSSIAN, HONDO, DISGEO, ECEPP2, etc.

Quantum Chemistry Program Exchange (QCPE)
Department of Chemistry
Indiana University
Bloomington, IN 47405
812. 855-4784

Extensive catalog of programs for quantum mechanics, molecular mechanics, and
molecular graphics. QCPE being academically affiliated provides software and
documentation at nominal cost. All large workstations, minicomputers.

Macro Model 2.5, 3.0
Dr. W. Clark Still
Department of Chemistry
Columbia University
New York, NY 10027
212. 280-2577

A user-friendly molecular modeling package for molecular mechanics and confor-
mational searching of organic molecules, proteins, nucleic acids, carbohydrates,
AMBER- and MM2-like force fields, implicit solvation model, reads Cambridge and
Brookhaven PDB files. VAX, Convex, Alliant, and workstations.

SYBYL
Tripos Associates
1699 Hanley Road
St. Louis, MO 63144
800. 323-2960

A complete, user-friendly molecular modeling package with capabilities for molec-
ular mechanics, conformation seraching, mink: lization, semiempirical and ab initio
MO calculations, molecular graphics, active analog approach. Tripos, AMBER- and
MM2-like force fields. Components for handling organic molecules, macromolecules,
and polymers. Interface to Cambridge Structural Database and Brookhaven
Protein Database. CONCORD rule-based molecular model builder. QEAR module
based on comparative molecular field analysis.

CHEM-X
Chemical Design Inc.
200 Route 17 South, Suite 120
Mahwah, NJ 07430
201. 529-3323

176

166

An integrated, comprehensive set of modules including ones for building of organic
and inorganic structures, graphics, conformational analysis, quantum mechanics,
database management, statistics (QSAR), proteing modeling, dynamics.

QUANTA/CHARM
Polygen Corporation
200 Fifth Avenue
Waltham, MA 02254
617.890-2888

Structure building, manipulation, energy minimization, and molecular dynamics,
Boltzmann jump Monte Carlo conformational searching, protein homology search
ing, MOPAC interface. QUANTA is an interactive graphics front-end to empirical
energy calculations using the Chemistry at Harvard Macromolecular Mechanics
force field. Reads Cambridge and Brookhaven PDB riles. Polymer package.

BIOGRAF
BioDesign, Inc.
199 S. Los Robles Avenue, Suite 270
Pasadena, CA 91101
818-793-3600

Structure building, manipulation, energy minimization and molecular dynamics in
VAX or workstation environment. POLYGRAF for treating polymers.

INSIGHT/DISCOVER
BIOSYM Technologies, Inc.
10065 Barnes Canyon Road, Suite A
San Diego, CA 92121
619. 458-9990

Structure building, manipulation, energy minimization and molecular dynamics,
protein loop searching, MOPAC interface. INSIGHT is an interactive graphics
front-end to the empirical energy calculations of DISCOVER. DMo1 for quantum
mechanical density functional theory calculations. DelPhi for electrostatics poten-
tial maps.

CHEMLAB-II
Molecular Design, Inc.
2132 Farallon Drive
San Leandro, CA 94577
415.1313

A modular molecular modeling package forconformational analysis, quantum
chemistry calculations.

177

PROPHET
BBN Systems and Technologies Corporation
10 Moulton Street
Cambridge, MA 02238
617. 873-3353

Molecular mechanics and display, statistical and mathematical modeling.

IlYPERCHEM
Hypercube, Inc.
16 Blenheim Road
Cambridge, Ontario NIS 1E6
Canada
519. 622-0260

Model building and display on a DOS-compatible Chemputer parallel processor;
interfaces to molecular mechanics, semiempirical, and ab initio packages.

AMBER 3.0
Dr. Peter A. Kollman
Department of Pharmaceutical Chemistry
University of California
San Francisco, CA 94143
415.476-4637

Assisted model building using Energy Refinement. Energy minimization, molecu-
lar dynamics, and free energy perturbation calculations.

GAUSSIAN
Gaussian, Inc.
Dr. David J. Moses
Dr. John A. Pop le
4415 Fifth Avenue
Pittsburgh, PA 15213
412. 621-2050

GAUSSIAN86 and GAUSSIAN88 ab initio quantum mechanical calculations,
archival storage of computed results, wave functions, configuration interaction
geometry optimization, properties.

GAMESS
Dr. Michael Schmidt
Dr. Mark Gordon
Department of Chemistry
North Dakota State Ur.iversity
1301 12th Avenue North
Fargo, ND 58105
701. 237-8906

178

General Atomic and Molecular Electronic Structure System; public domain
software for ab initio calculations. Wavefunctions, properties, geometry optimiza-

tion.

GRADSCF
Polyatomics Research Institute
Dr. Andrew Kormornicki
1101 San Antonio Road.
Suite 420
Mountain View, CA 94043
415. 964-4013

Ab initio calculations, geometry optimizations, derivative properties, such as force
constants and vibrational spectra.

IIONDO
IBM Corporation
Dr. Michael Dupuis
Scientific and Engineering Computations Department
Department 48B, Mail Stop 428
Kingston, NY 12401
914.385-4965

Ab initio calculations for IBM 3090 and other IBM computers, interface to molecular
graphics package for IBM workstations.

CADPAC
Dr. Roger Amos
Dr. N.C. Handy
Lynxvale WCIU Programs
20 Trumpington St.
Cambridge CB2 1QA
U.K.
44. 223-336384

Cambridge Analytical Derivatives Package.

179

Chapter 9

The National Education Supercomputer Program

RICHARD ENDERTON

BRIAN LINDOW

What would happen to the earth's precipitation if the ozone level were radically altered,

or if the earth's orbit were more elliptical, or if other land masses were formed? What would
it look like if the function y=sin2t were graphed ov er time? What would happen if the index
of refraction for a magnifying glass were changed? What happens when a proton moves
through a magnetic field, and what would happen if its direction of movement were
changed? What if ..

Science and math teachers are intimately familiar with the myriad of "what if'
questions that arise in the course of teaching theirsubjects. Thuy are also familiar with the
frustration of being limited to theoretical responses, when what they would most like to be

able to do is demonstrate the answers, or better yet, have the students themselves try to
discover the answers.

In fact, the "what ifs" in laboratories around the world are being approached quite
differently by scientists today than in the past. Science has traditionally been a shuttle run
between theory and experimentation, as shown in Figure I. As illustrated in Figure 2,
however, with the increase of speed and memory of computers, science has sprouted a third

leg: simulation.

Figure 1. Science in the past

181

0

Figure 2. Science in the present

Many natural phenomena can be described by (sometimes extremely complicated)
mathematical formulas and relationships. High speed computing has enabled scientists to
examine such relationships and their results, through programmed simulations that the
scientist can provide with a set of initial parameters. Experiments which would be difficult,
if not impossible, to perform in real life can be simulated by a computer which does multiple
repetitions of the formulas dictating how the elements of the experiment will interact. The
results are then displayed, often using intricate graphic representations. Computer
simulation has had a huge impact on the way science is performed at top-level laboratories,
and now secondary schools have a chance to utilize some of these same simulation tools.

The National Education Supercomputer Program (NESP) is placing the power of
supercomputers and their ability to do modeling and simulation in the hands of high school
teachers and students around the country. NESP makes classroom demonstrations and
experiments possible in ways that were, until recently, limited to large scale laboratories
and top-flight scientists.

The National Education Supercomputer Program

NESP is sponsored by the U.S. Department of Energy, and has a mission to help
America's teachers motivate and educate the nation's students in math and science. The
program provides a unique instructional tool for science and math teachers and students
in junior high school, high school, and community college classrooms throughout the U.S.
Toward that end, the program goals are to:

Perform large-scale computer simulations and modeling to enhance classroom science
and math instruction and to demonstrate the importance of supercomputers in scientific
research;
Supply a reliable, progressive computing environment that supports efficient, wide-
range network connectivity;
Develop distributed software that allows students and teachers nationwid' to use their
local microcomputers in conjunction with the National Education Supercomputer;
Explore and develop projects that foster interdisciplinary education;
Provide a mechanism to facilitate communication between teachers nationwide and to
encourage sharing curricula and ideas among teachers, students, and scientists.

The National Education Supercomputer (NES) is a Cray Y-MP, which was donated by
Cray Research, Inc. it is housed at the National Energy Research Supercomputer Center
(NERSC) at Lawrence Livermore National Laboratory (LLNL). The Department of Energy

182

161

provides funding for the program. Brian Lindow, L-561, Lawrence Livermore National
Laboratory, P.O. Box 5509, Livermore, CA 94550 coordinates the program, and is the
contact person for information concerning all aspects of NESP.

NESP consists of two basic components:

The High School Teachers Supercomputer Workshops, and
The High School Science Students Honors Program in Supercomputing.

Supercomputing Workshops for Teachers

High school teachers are given hands-on training with the NES in two-week work-
shops. During the course of the workshops, the teachers have the opportunity to learn the
techniques of distributed computing and to become familiar with the applications and
utilities afforded on the NES. Time is also spent developingcurriculum applications of the
tools available. Teachers have the opportunity to bridge the gap between textbook concepts
and actual applications by working with these advanced scientific tools.

After training, teachers return to their own schools where they establish accounts for
their students on the NES. The students can then also participate in simulations and
modeling similar to the "big science" conducted at major laboratories. Access to the NES is
accomplished via phone lines and modems from the classrooms, and electronic links to oth er

schools participating in the program are established through the NES.
An outstanding aspect of the program is that it is notdesigned for just a few unusually

talented students. The applications can be usedwithout any knowledge of programming,
and the steps involved in transferring files to andfrom the NES are elementary. Average
students can become proficient in the use of the applications in a very short time. Then they

can concentrate on the science which they are exploring. The applications, however. are
only the beginning. There is literally no end to how far students and teachers can pursue
their interests in fields which would otherwise be restricted because of a lack of computing

power.
Best of all, the cost is minimal. Most schools already have the necessary hardware:

microcomputers (IBMs or MacIntcshes), modems, and phone lines. Access to NESP is

an 800 number. Both the computing time and the application software on the Cray are
supplied by NES. There is only the negligible cost of the file transfer software (which can

be obtained as shareware).

The High School Science Student Honors Program in Supercomputing

The NESP has for the last eight years conducted anannual "Superkids" program which
brings some of the nation's iiiost talented high school math and science students to LLNL.
Participants in this program, one from each state, are chosen by the state's governor.
Students from several foreign countries have participated aswell. The Superkids spend two

weeks at Livermore with all expenses paid. LLNLemployees serve as host families. During
this period they tour many of the research facilities at the lab, as well spend time talking
with the scientists and engineers at the lab. They also have opportunity to meet and hear

some of the the nation's most eminent scientists.
The Superkids spend a portion of the two weeks learning supercomputer applications

and developing projects to present on the final day. NERSC staff serve as lab advisors, and
the Superkids gain a keen insight into the workings of a scientific community.

183

132

Information and names of contact persons for the Superkids Program in each state can
be obtained from Brian Lindow.

NES and Distributed Computing

The underlying concept behind using the NES in the classroom is distributed
computing. Each type of computer in the distributed computing environment is utilized
according to what it does best. Microcomputers, virtually the only types of computers
available in high schools, are excellent tools for seeing immediate results on the screen in
response to information entered. Parameter entry for NESP applications is therefore done
locally on microcomputers using interactive software. Much of the information is entered
using a mouse, although numerical values are easily entered as well. As data is entered,
the effect that the new information will have is displayed graphically on the microcomputer
video screen. When the parameters are set, and the user has the desired setup, then it is
time to tap into the NESP Cray's computing power.

The file containing the setup information is transferred to the NES via a modem and
phone lines. Once the Cray receives the information, the appropriate application is run,
with the setup file as input. The Cray supercomputer performs the enormously complex
calculations, and produces an output file, which normally is a graphic representation of the
results. Supercomputers are not, however, well suited to displaying graphics, so the output
is returned from the Cray to the microcomputer via a modem and phone lines for viewing,
once again utilizing the smaller computer for a job it is well designed for.

The distributed computing cycle of local set-up, calculations on the NES Cray, and local
viewing, shown in Figure 3, is a very efficient use of resources. Many students can be
workin g on experiment design and set- up, as well as interpreting results on local computers
without tying up the NES. Even with only one phone line, students can take turns sending
files to the Cray for computation while others are either performing setups or analyzing
computed results, since file transfer time and computation time is relatively short.

6. View the graphics
on the micro.

1. Run a program on
the micro that creates
an input file.

Move the input file
up to the Cray for
processing

5. Move the graphics
file down to the
micro.

11

Run a program on
the Cray that
creates an output
data file.

4. Convert the data file
into a graphics file.

Figure 3. Distributed software cycle

184

Li 3 BEST COPY AVAILABLE

Applications

At present there are three applications on the NES for which the accompanying setup
and viewing software are available for microcomputers: ray-tracing, particle physics and
climate modeling.

Ray Tracing fireman /Movie)

Ray tracing is an advanced technique for creating realistic graphic images of solid
geometric objects in order to get a better appreciation for how they look. The benefit of
computer graphics techniques is that solid models can be viewed and manipulated without
the need for constructing an actual physical mock-up. Ray tracing techniques are used in
a variety of commercials and movies as well as scientific modeling. Ray tracing builds an
image by approximating the way light interacts with matter, calculating what happens to
light rays as they strike objects which have colors, reflective and transparent qualities,
surface texture and other attributes (see Figure 4).

The ray tracing program used on the NES is called Mesa. Mesa uses the principle of
backward ray tracing (see Figure 5) to improve efficiency. Instead of calculating the path
of light rays coming from the light source and interacting, with objects, the calculations are
done "backwards" from the eye position, which reduces the number of necessary
calculations.

Light Som.

Frailly* *WWI

Figure 4. Forward ray-tracing

185

ILIght Silures I

Viewing Nam

IRellsetive obisel

WWI vs eb

Figure 5. Backward ray-tracing

There are seven basic objects used in Mesa: sphere,cone, torus, cylinder, super spheroid
(rectangular solid), square, and height field, as shown in Figure J. Each of these objects can
be given surface attributes, which include color, degree ofopaqueness, transparency (with
variable index of refraction) and reflectivity. The objects are placed in a three dimensional
coordinate system, and they can be scaled and rotated and positioned using valuesoriented
on the x, y and z axes.

Other parameters can also be altered. Eye position and focal point can be moved. Light
sources can be added or moved, and they can also be colored. There are special attributes
for some individual objects; for example the inner radius of the torus can be changed relative
to the outer radius.

A height field is a square divided into a 512 by 512 grid. Valuescan be established for
the elevation of each gridpoint. These values can be entered into a corresponding 512 by 512
array, usually according to a formula.

Images can be mapped onto the surface of objects. Patterns or pictures can be "pasted"
to squares, spheres, or any of the other objects.

"Wireman" is the name of the program used on the microcomputer to enter the objects
and their attributes. As shown in Figures 7 and 8, thescreen consists of windows in which
objects can be added, positioned, rotated and scaled. Eye position and viewpoint (focus) can
also be established using a mouse. Pull-down menus contain options for altering the
attributes of the objects and the light sources.

In the center of the screen is a viewing window in which a wireframe representation
of the selected objects is displayed. As the objectsare manipulated, the relative positions and
scaling are updated on the viewing window. The wireframe objects displayno color, but they
do enable the user to constantly see a sketch of the scene as it is built and where the objects
will be in the final result.

186

Torus
O

Sphere

'Super Spheroidi

Cone

Figure 6. Oinpcts nl Mesa

.ther the scene is (Tented. user lakes a -snapshot of t he objects. The snapshot
records t he objects' posit ions and at t rihutes in what iscalled a snapshot file. Animations are
vastly created. in t hat a series of snapshots can be taken as object and/or eye posit ion are
altered These subsequent snapshots are appended to the snapshot file. The snapshot tile
is 1 hen sent to t he I 'ray supercomputer for processing. In I he ease of graphics general ion.

AI/4111.
Llluarei Height Field]

ii Isle Wit littributes 114 Options

I
1 .rip

0 6.000
4.000

0 6.000
CZNIMMINIME2

nutunull
35.000
0.000

S
it

0.000

111
Position

O 10.000

O 0.000 j2e
Jt.r it1=1:1=13/11111:1 1

Stlypdate WIre.:41
Q manual
(a) Ruto
Uplift'.
.1,10 It) to, I

Sphere
Cone
Torus

lylinder II

Square
Su er Sphefinil

Iles ht 1 field

Figure 7. 1Vireman Interface

I trri'l Mrs(2 ;M lD

(477 s;

4,4

r)

'if.
OP 0.1100

0.000
4. 50.000

MittEMMEIna
1.1p1leit toi *win

er.

0.000 j.
100.000

.

(lip LLi ii Uiilt

170

0 000
0.000

re

O 0.000 4
)

I 19 I l i p

Snapshot SKR

Frame 0
Fly Filename
une.fly

(C di(nenl pus

* Circle
0 Vector
O Arc

IS7 .1

11/1' Edit two.,
41114 .1..itIlloil

El1.000

1.000

0 1.000

» 411

» 41,

» i
IN

0.000
0.000 17; rstsHI

20.000 4 3.......
Attributessiltationiltation Uptlector

0.000
0.000

HColor ighlightln
0.800 Red 0.500 SMult
0.400 Green

Blue
50.000 SPower

0.000

Position Color Wheel (Image mapping;

41 0.000 Color Scheme Testure
O 0.000

0.000
0-1

Update Whir
4101 Manuel
Os Auto
Update :aU

One Color

Reflection
1.000 Reemitted
0.000 Reflected
0.000 Transmitted
1.500 Indes

r--11T;Tt

Smooth

Special
FO..000

0.000

Inner Radius
Ignored

0.000
100. 0 0 0

0.000

View Point
0.000

8
0.000
0.000

fly I$le

napshot 81R

ama 0
lidd able. I j Filename

Sphere e.fly

Calc. nest pos.

Cylinder II @Circle
Squere 0 Vector

Super Spherind I, 0 At c
Height Field.

Curie
torus

OK I Cancel

sn

L._

Figure 8. Wireman Attributes Menu

this processing is called "rendering." Rendering turns t he snapshots into final, finished
pictures. The wireframe sketches are filled in to make solid objects that have the color.
shading, and other attributes derived from the application of the light sources in the model.
The result. of rendering the snapshot file is a graphics file, which is then returned to the
tT rocomputer for viewing.

Ray tracing is a fascinating process, and students are intrigued by it. There are several
inherent mathematical concepts in ray tracing of which the students gain understandi.ng
simply by immersion in the application. For example, when using Wireman, students work
in a world determined by the three dimensional coordinate system. To manipulate objects,
t hey must move around in the system, do scaling on the objects, and apply rotations, as well
as keep t rack of where objects are relative to each other. They can use ray tracing to move
further into mathematics by. fur example. graphing functions over three dimensions,
modeling slicing as applied to solids in calculus, and experimenting with fractals. Scientific
applications can include such exercises as experimentation with lenses and the index of
refraction and the modeling of scientific concepts such as molecules, atoms, and cells
Figures 0, 10. and 1 I. and Color Print 5 provide illustrations of the kind of visualizations
that are possible.

As noted earlier, after the snapshot file is rendered on the ('ray, the rendered output
rile is sent back to the microcomputer. The returned data is in the form of an 8bit graphics
file Another program on the microcomputer, called Movie, is used to display the graphics
file on the screen. If a series of snapshots were rendered, the first of these appears on t he

1.i
I55

screen. A VCR-type set of buttons is also displayed, so that the snapshots can be run inorder
forward or backwards, looping around from the last frame to the first and running non-stop.
The frames can also be changed one at a time. Movies can be scripted so that text can be
included on the screen. Scripts enable the user to show chosen frames, slow down the action,
or chain several movies together into one longer movie.

Particle Physics Simulations (Particleman / PC3DV)

The particle physics simulator is based on a very simple model. The user creates a box,
and into this box places up to hundreds of particles. Then the particles are released and the
user can essentially sit back and watch what happens.

The box can be given whatever size is appropriate for the simulation. It can be big
enough to encompass a solar system, or small enough to view interactions on an atomic
level. Exit conditions for particles reaching the limits of the box can be set to loss (the particle
simply disappears), periodic (the particle enters the box again on the opposite side), or
bounce (self explanatory). Conditions in the box can be altered by ch anging the gravitation-

Figure 9. Graph of y=sin2x over a third dimension

Figure 10. A height field with the elements of a julia set elevated

189

BEST COPY AVAILABLE

Figure 11. A flattened transparent sphere acting as a lens

al constant, or applying external magnetic and/or electrical fields, which the user can set
as desired.

"Particleman", as the set-up software for the local microcomputer is named, allows the
particles to be given initial masses, velocities, positions in the box and charges if desired,
again set by the user. Other parameters can be varied, such as interparticle potential and
final energy rate which can be used to simulate particles moving through other substances.
A Particleman interface window is shown in Figure 12.

ii File Simulation Interparticle Energy Particle Windows 1:24:29 PM PM

Disp laij Window I Fisk Ix,
Grouttati

OM,
0 Maillistle<

me

Partici*
Position *10

0.000000 x
01,000011"

o.000post.

Figure 12. Particleman interface

190

1J ti
BEST COPY AVAILABLE

One of the probiems with simulations is that computer calculations are done in discrete
steps rather than continuously. The more often the calculations are done, and the smaller
the time interval between, the more accurate the simulation will become of what actually
would happen. Doing simulations using Particleman, the user can set how often calcula-
tions will be made, how many of them will be made, and how often a picture is to be taken
for later display.

As with ray tracing, a setup file developed with Particleman is sent to the
supercomputer for processing, and an output file is returned for viewing. In the case of the
particle physics simulator, the viewing software is called PC3DV. The display consists of
one large box, corresponding to the simulation box. This box can be rotated to view the
simulation from any desired angle. There are also smaller boxes showing the orthogonal
views from the x, y and z axes. When the display is run, the particles appear in the box as
dots. They move according to the results of the simulation and according to the number of
discrete pictures taken as specified in the simulation set-up. The particles are color-coded
to show their relative velocities. The display can be run in an animation mode, where the
particles appear to move in the box, or it can be run in a trace mode, in which the particles
not only move, but leave a trnil consisting of all their previous positions, as illustrated in
Figures 13 and 14.

File Options Windows 1:32 42 PM l RI

Front lliew-HY Plane norh.sim

IThs

Side View ST Plane

lop Uiew-HZ Plane

Ulm Position

*oh 14

Fel*,

Control Panel

Zoom In)
slow Num unlit
(Run Time: 2.7811

I of particles
2

Figur, 13. A simulation of an orbiting body

191 A.,

BEST COPY AV/MARIE

File Options Windows 1:31.30 PM co A4
front llieui-HY Plane Pli14.11M

Side View Y2 Plane

lop Uteul-HZ Plane

tech

Felt*

Control Panel
Plow Position

(Zoom In)

oom Out

Stow min 'Fast
Run)

Step)

Time: -1.000
* of particles

1

Figure 14. A proton moving through a magnetic field

More advanced users can also access a ray-tracing program generated as a result of the
simulation, and alter the size and color of the particles so that the simulation is run as a ray-
traced graphics movie, with spheres or other object representing the particles, complete
with shading and highlighting.

The wealth of applications of Particleman in a science class are striking. Teachers can
create demonstrations of concepts otherwise difficult tovisualize, particularly those on very
large or very small scales. Demonstrations can be interactive, since parameters can quickly
be changed and a new trial processed and viewed. And, of course, it gives students a
tremendously powerful tool to help them answer the "what ifs" for themselves.

Climate Modeling

Climate is defined as weather over a long period of time. Basically, climate models
feature the ability to make changes to important aspects of the earth's climate system,
especially changes in solar radiation, atmospheric composition, land features, and water
features. Altering these features will alter the earth's climate. The climate model has the
job of calculating and displaying just what those changes will be.

A climate model is based on fundamental laws of physics and consists of a set of partial
differential equations. Solving these equations within reasonable time requires the
capabilities of a supercomputer. The solution technique requires that the global atmo-
sphere be subdivided into thousands of box-shaped elements. The model used in NESP is
the OSU model developed at Oregon State University. For this model, the boxes are four
degrees latitude by five degrees longitude.

192

The set-up program on the microcomputer for the NESP climate model is called
Climoman. It allows for changes in a long list of p aram eters. Some parameters are changed
numerically, including:

solar constantthe amount of energy received on a surface oriented perpendicular to
the sun's rays.
rotationthe time of the earth's rotation around its axis.
gravitational constantthe acceleration of gravity due to the earth.
eccentricitythe degree of elongation of the earth's elliptical orbit about the sun.
aphelionthe day of the year when the earth is farthest from the sun.
radiusthe earth's radius.

Other parameters are altered by using the mouse and pointer to "paint" the changes
onto a world map which is displayed on the screen. These include:

surface type- -the type of vegetation in each grid box on the map. Each grid box is
considered to be entirely covered with the same vegetation. The surface types available
are:

woodland/grass
steppe and grassland
desert
water

forest
steppe desert
tundra/mountain
land and sea ice

As surface type selections are made and put on the map, new land masses can be formed,
and existing land masses can be deleted. Students can, in effect, create their own worlds
if they choose.

geopotentialthe product of gravity and the height of the land above sea level.
Geopotential is used rather than height in the model because gravity is usually
associated with height.
sea surface temperaturethe temperature of the water of the sea. This temperature
affects the evaporation of water. Evaporation at the surface and its condensation to form
precipitation in the atmosphere is a major way in which the solar radiation absorbed at
the surface heats the atmosphere.
ozone amountthe amount of ozone in the atmosphere. Ozone is a toxic form of oxygen
which creates pollution and health hazards when it becomes excessive in the lower
atmosphere. Higher up in the stratosphere, ozone shields the earth from ultraviolet
light.

Figure 15 shows a picture of the Climoman interface.

193

II File Edit Run Options Graphing Options

Solar ranstant

2793.600 < 4.0E3 Lg

Rotation

< 48 hoursC f 24

ma Gravitational Constant

0.1< 9.810 < 10.0 g

Fr centricity

0.018 I < 1.0 frac.

flphelion

< r 8.3779 < 365 dag

Radius

Windows

World Map

16.21EVIr at-

54705pm CD 4

6375.000`1 < 1.0E7 m

EPIspotetion

reeeSurfece leap.

map Date

gi Surface Type
0 Geopotential
0 Ozone flmount
0Jan. Sea-Surface Temp.
0July Sea-Surface Temp.

Surface Type
C) Woodland / Grass
0 Forest
0 Steppe & Grassland
0 Steppe desert

Desert
0 Tundra / Mountain
0 Water

Lind and Sea Ice

Figure 15. Climoman Interface

Output parameters are also set using Climoman. The number of days for the model to
run and the starting month are established. Output can be displayed in several mc,%s,
depending on the information desired:

surface temperature
total cloudiness
surface wind speed

total precipitation
snow mass
ground wetness

Climate models are not perfect. These imperfections are called model bias. When a
model is run with the parameters set to the present time's usual conditions, stated as
modern standard conditions, it is often called a control simulation. Changing the modern
standard conditions results in an experiment simulation. Each simulation run on the same
climate model will hav+1 the same bias. Taking a difference between the control and
experiment siniulation& will remove some of the model bias. Climoman allows for output
choices of either monthly averages or differences.

As with the other applications, the Climoman setup file is sent to the supercomputer
for processing and an output file returned for viewing. The climate model output file is a
set of frames comprising a movie that shows a map of the world overlaid with colorcoded

194

information according to the input parameters established during setup. When the movie
is run, each frame represents a day as the climate changes moving across the map are
displayed (see Color Print 6).

Classroom Experience with NESP

NESP is relatively new, so the pool of classroom experiences from which insights can
be drawn is relatively limited. The approach to putting this tool in students' hands can vary
greatly. as can the student target groups NESP could be introduced as as club activity, as
a unit in a science or math class, or as a class unto itself. Each approach has its advantages
and disadvantages. The following is a description of our experiences at our school,

Minnehaha Academy.
Minnehaha Academy is a private K-12 school with about 900 students located in

Minneapolis. When we were offered the opportunity to participate in the NESP, we saw it

as a chance to open some new vistas for our students, even though we at first were not
exactly certain how we could integrate it into the classroom. The approach we finally took

evolved as we received training.
To become familiar with the program and the software, two teachers and one student

from Minnehaha attended two weeks of training at LLNL in the summer of 1991. Laterthat
summer we conducted a two week workshop for several other Minn ehaha teachers, and two
other teachers from the Minneapolis area. The experiences of the summer !rye us a
foundation to build on.

We decided to establish a separate semester-long course at the high school level, called
supercomputer applications. For the first class in the fall, the students who had the
previous spring registered for an introductory computer programming and survey course
were asked if they would be willing instead to participate in this new class. (Actually, the
supercomputer applications became an addendum to the originally planned course.) As is
true in many schools, computer equipment was limited. The class of ten students was
conducted with three Macintosh computers and two phone lines, plus access to a lab with
Apple II computers. As a result, the class became a hybrid. An even/odd day routine was
developed for determining who had access to NESP on a given day. On their "off' days,
student worked on other computer related projects, which included programming in

BASIC, Logo, and Pascal, as well as some applications like Fantavision and Platinum Paint.
They were also assigned several reports in the course of the semester.

For the NESP portion of the course, the early part of the semester was spent in
becoming accustomed to file transfers, the utilities on the NESP Cray supercomputer
(including e- mail), and the whole concept of distributed computing. As students learned the
applications, they were assigned projects which involved the use of theseapplications. The
choice of projects was left as open as possible, and students were encouraged to develop their

own ideas and follow their own interests. They were given broad guidelines as to what type
and how many projects were expected of them.

Additionally, students were encouraged to examine the other courses they were taking
to see if there was a project which could benefit from one of the NESP supercomputer
applications, for example in math, science, or even art. The hope was that the teaching and
learning possibilities available through NESP would inspire other teachers and students
to use NESP. An example of the use of the supercomputer tools in a science class is the
student who used ray tracing to develop a cell model for a biology assignment. Rather than

195

making a poster or a hand-held model ofa cell, the student modeled the cell using Wireman
and created a movie which focused in on the cell and then "flew" around it, showing the
cellular structure from different angles. He also used scripting to label the parts of the cell.
A frame from this sequence is shown in Figure 16.

Figure 16. Cell Model (Seth Stattmiller)

Because of time limits on access to the Macs, most student projects were not very
elaborate. But the course served to whet students' appetites, and out of the ten in that first
semester class, five asked if there was any possibility of continuing witha second semester.
It was arranged for those five to take a second semester as a project-oriented independent
study course (in addition to a new group of students in the introductory course). Each of
them had an hour designated for the class, all at different times, so each had access to a
Macintosh and a phone line for essentially a full class hour every day. Progress was
monitored periodic personal contact with the instructor, via e-mail, and via electronic file
transfer. It was with these five advanced students that the most exciting features of NESP
have surfaced.

The advanced students were assigned four extensive projects. First, they were to use
ray-tracing to do an "inside-out" project, in which they were to demonstrate the inner
workings of any everyday object, such as a spray bottle or a ball-point pen. For example,
two of the students created a movie in which they "flew" intoa Macintosh via the disk drive,
as illustrated in Figure 17. Another student did a project with a spray bottle, demonstrated
in Figure 18.

The second project was one to be done in conjunction with another teacher. It could be
to develop a demonstration, for example of conic sections shown usingray-tracing, that the
teacher could then use in the classroom. Or it could be a science experiment corresponding
to work being done in a science class. In one case, two students worked together with the
physics teacher in developing a simulation of Rutherford's experiment. Another project W a S
done for an art competition.

For the third project, thy students were asked to do a collaborative effort with another
student in another part of the country. This required the students to use bulletin boards
and e-mail as well as file transfers. One student workedon a project involving the modeling
of the solar system, the introduction of a "nemesis" object, and then a climate model done
on the earth according to its new orbit. She worked with a Japanese exchange student living
in California.

196

.01

Figure 17. Three frames from the movie "Into the Mac" (Greg Anderson and Jeff 0 egem a)

197 i
"Ll 0

S

4

Figure 18. Three frames from the "inside out" movie, "Spray Bottle" (April
Neighborgall)

198 BEST COPY AVAILABLE

The fourth project was left to the students to design, but it had to involve the
applications in a way that ensured that each available NESP application had been used
at least once in the course of the four projects.

It was exciting to see the projects evolve. It was also rewarding to notice how classmates
looked over the shoulders of these students and developed an interest in what was being
done, since a major goal of the projects was to get more teachers and other students involved
in and aware of the opportunities in the computer lab. The collaborative projectsalso helped
the supercomputer students develop their communication skills.

Summary

NESP opens a wealth of possibilities for the math and science teaching. It allows for
visualization of concepts previously difficult to show graphically. Students are captured by
the ability to be able to build models using ray tracing, at the same time applying principles
of mathematics. Experiments which are impossible to do in the high school classroom can
be simulated in a very short time, and the results displayed in easy to understand movie
frames. Just as important, students are exposed to the world of electronic communications
and begin to learn skills which will be vital in the workplace of the future.

Participation in the program can be achieved even with limited equipment. Ideally, the
school should have a lab of IBMs and/or Macintoshes, and at least one phone line with
modem, but with some imagination, even a very limited supply of equipment can be used
advantageously.

For a school to become part of NESP, it is necessary for at least one local teacher to
attend a teacher training workshop. At the completion of the workshop, that teacher can
establish accounts for other teachers and students at the school. Again, information on
workshops can be obtained from Brian Lindow.

Becoming involved in the program takes some effort and time commitment, but if we
are interested in providing our students with the experiences and tools to become the
scientists and mathematicians and productive citizens of the future, we owe it to them to
make the effort. The interest and excitement of the students and the opportunity to give

them some unique experiences makes it all worthwhile.

There's an old adage:

If I hear, I forget;
If I see, I remember;
If I do, I understand.

NESP provides an outstanding opportun ity to" do", notjust for a few students, but for a wide

range of teachers and students with a wide range of applications.

199

Chapter 10

New Mexico High School Supercomputing Challenge

MARILYN S. FOSTER

Scientific computing and visualization can be a real boon to education; however,
providing the opportunity for hands-on experience to high school students is beyond the
financial reach of most school districts and the expertise of their personneL Community
support in the form of funding and personal involvement is needed to provide a program
enabling students to experience the excitement of doing science using the powerful
technologies available today. The New Mexico High School Supercomputing Challenge is
such a program; it helps to fill the gap between existing technology and what is available
in the schools.

Opportunity is the hallmark of the New Mexico High School Supercomputing Chal-
lenge. The program provides a chance for students and teachers to discover how science can
be used to solve some of the complex problems that face the world today. It is also an
opportunity for the scientific, academic and business communities to roll up their sleeves
and become actively involved with the scientists and engineers of tomorrow.

The Supercomputing Challenge is an academic-year-long program that gives high
school students throughout New Mexico the chance to do computational science projects
using high-performance computers. The program was first conducted during the 1990-91
academic year, and students, teachers, and sponsors took part with enthusiasm. The
anticipated turn out for the first year was 10 to 15 teams, but the actual response topped
GO teams.

Participating schools form teams of one to five students with a sponsoring teacher and
a technical coach from academia or a research laboratory. Each team defines and works on
a single computational project of its own choosing. Projects from all areas of science and
mathematics are undertaken with many teams choosing problems that have direct impact
on their local environment. This past year, projects included sulfur dioxide pollution from
a nearby smelter, a model of rangeland with and without ranching, the path of pollution
particles in the state's atmosphere, dispersal of contaminants in a local water system, and
congressional rediftricting of the state.

201

The Challenge is open to all students in grades 9 through 12 on a nonselective basis.
Participants come from public, private, and parochial schools in all areas of New Mexico.
In the first year of the program, 235 students on 65 teams with 55 teachers at 40 schools
participated, and in the second year the numbers increased to 419 students, 91 teachers,
112 teams, and 91 schools. Ten judges and inore than 70 coaches volunteered their time and
scientific knowledge w provide a rewarding experience for the teachers and students.

The Challenge is both an educational program and a competition. While increased
knowledge is the primary goal, those teams who have made significant progress with their
projects can enter them in the competitive category and vie for scholarships and savings
bonds for individual team members and computing equipment for their schools. Those
teams who have concentrated on the learning experience can opt not to enter the
competition. Both categories of participants benefit from the educational materials and
training provided.

Goals

The goals of the New Mexico High School Supercomputing Challenge include the
following:

Increase science and computing knowledge at the high school level and expose large
numbers of students and teachers to computational subjects and experiences that they
might otherwise not have.
Promote careers in science and engineering by instilling enthusiasm for science in high
school students, their families, and their communities.
Encourage students to compete academically and give them the experience and
confidence to enter national competitions.
Develop a sense of team work in tackling a scientific problem.
Reduce the isolation of teachers in remote areas by putting them in touch electronically
with their colleagues at other schools so they can exchange ideas and information.
Take advantage of existing science and computing expertise and resources within New
Mexico for the benefit of high school teachers and students.

Features of the Challenge

A number of the characteristics of the Challenge have contributed to its success. The
Challenge offers nonselective participation, makes available a variety of computer archi-
tectures, provides ongoing support to participants, and draws on a broad base of community
support to provide the program at no cost to the schools or participants. The cost of the
Challenge, discussed in more depth below, is wholly borne by the industry, government,
and academic sponsors.

Participation on a Nonselective Basis

The Challenge is open to students enrolled at any New Mexico high school (grades 9
through 12). 'there are no prerequisites of academic classes, grade point average, or

202

computer experience. Those whe enter the program need only be interested in learning
about computing. It reaches students at schools where computing equipment and comput-
ing courses may not be available, as well as schools that have well equipped computer
laboratories and advanced-level computing courses. The program lends terminals and
modems to schools that need them.

There is a wide variation of knowledge among participating studentsfrom students
who do not know any programming language to those who have broad and diverse
knowledge and experience in the use of computers. One student wrote, "Before beginning
the Challenge, I could have been classified as virtually computer illiterate. In the end, I
could understand a number of the things that computers are capable of doing and the things
that I could do with them."

Because the Challenge is open to all students on a nonselective basis, the emphasis is
on achievement, or competition at each team's own leveL The teams of students come to the
Challenge with a wide variety of starting points in terms of computing knowledge and
experience. Figure 1 illustrates the differing starting points for a group of teams and the
progress each made during the program. The goal of the Challenge is to maximize the
learning line for each team regardless of the starting point. Real success can be measured
by knowledge acquired even if a team does not reach the point of having a competitive
project.

IX

X

X

X

X

Kickoff
Workshop

X= starting point
-4.= progress

Project
Judging

Figure 1. This diagram shows the variety of levels of computing knowledge and
experience of teams beginning the Challenge, and the progress made during the
program.

203

The program reaches many students who are historically under represented in
scientific fields. In the initial program in 1990-91, women represented 25% of the students
and 35% of the teachers, and three teams were all women. By the secondyear, the number
of women students had increasId to 30% and the teachers to 43%.

REGISTRATION STATISTICS

Challenge 2 Challenge 1

Schools 51 41

Teams 112 65

Students 419 231
Male 70% 74%
Female JO% 26%
Hispanic 38% 22%
Native American 11% 3%
Asian 3% 2%
Black 2% 1%

Teachers 91 60
Male 57% 67%
Female 43% 20%

Figure 2. This chart shows the number of participants in various categories for the first
two years of the program. We hope to increase participation among minority students by
seeking the support of organizations that promote awareness and academic involvement
for these groups.

In Challenge 1, approximately 75% of the students were seniors, with most of the others
in the junior class. The second year of the program saw a broader distribution with 43% in
the 12th grade; 36%, 11th grade; 15%, 10th grade; and 6% in the 9th grade. Many teachers
remarked that they were encouraging students to start entering the Challenge while in the
earlier grades so they could gain the knowledge and experience needed to be competitive
by their junior or senior year.

Schools mayjoin together to form a team. Students from the New Mexico School for the
Visually Handicapped joined with sighted students from a local high school to form a
team--both groups benefited from the arrangement.

Access to Different Computer Architectures and National Networks

Students are provided time on CRAY, Connection Machine, Convex, IBM, and VAX
computers, where they may explore the different architectures in finding solutions to their
problems. All participants are given accounts on the computers at Los Alamos National
Laboratory, and teams may also request accounts on machines at Phillips Laboratory and
Sandia National Laboratories. More than 125 hours of supercomputer time were used by
participants during the first year, and over 300 hours were used during the second year.

New Mexico Techn et provides state -wide computer network access to these computers
via 1-800 and local telephone lines. As the number of participants increases, it has been
necessary to add several more telephone lines to this network to accommodate the usage.
One student moved to a schoo1150 miles away at midyear. This school was not participating

$.0

204

xx
EOM

XX X

xx

xx

xx

* Los Alamos
x):xx x xx

xxxxx x x x

XXXXXX

xx

XX

m000txxxx x

X
x e*Albuquerqu

XXXXXX X X

*Socorro
xxxx
xx

*Las Crucesxxxxx
X X X

xx X
XX

xx

x xx

XX

xx

Figure 3. On this map of New Mexico, you can see that the teams are located all over
the state, far from the sponsoring institutions in the major cities. Over half of the
participants are from small towns and rural areas.

in the Challenge, but through the electronic network, the student was able to continue
working with his team and complete the project.

Access is also provided to the national networks. By using the internet, students can
access information from around the world and contact experts working in their scientific
area.

Ongoing Support

Throughout the Challenge, a wide variety of support is provided to the participants.
Each team receives

training and computer documentation;
equipment-loansil needed;
communications and computing troubleshooting and consulting;
scientific coaching.

205 2

Training: The Challenge begins with a kickoff workshop in October where scientists talk
about supercomputing and its application in different scientific fields. Instructors
conduct hands-on laboratory sessions during which participants log on to the computers
through the communications network and use basic commands to compile and run a
sample program. In addition, district workshops are held during the course of the year
at five locations around the state to answer questions and provide further instruction.

Documentation: Each participant receives a notebook of documentation, which gives
them quick tips about using electronic mail, file editors, file storage, and basic UNI COS
commands. Online documentation is available on many topics, and teams may borrow
reference material for additional help. Each team receives a reference package of
programming texts and information about graphics programs and output. The team
reference information remains in the school so that each participating school can build
a library of computing information.

Equipment: Because many schools do not have adequate equipmentto access the network
and supercomputers, terminals or workstations and modems are lent to those schools.
An equipment and communications technician contacts each teacher to determine what
is needed, finds the appropriate equipment, ships it to the school, and remains in touch
to be sure that everything is functioning properly.

During the second year of the program, to make it easier for students to include
visualization in their projects, district graphics centers were established at a number
of locations in the stateprimarily at college or university campuses. At the centers,
students in the Challenge have access to high quality graphics workstations on which
to view their output. A team can go to a nearby center, transfer their files from the
supercomputer to the workstation, and either write a programor use existing graphics
software to v iew the outpu t. The centers alsocon tain extensive reference documentation
not available in the local schools, and each center has a local consultant availableto help
the students.

Computer and Communications Consulting: Throughout the year,compu ter consult-
ants at the supercomputing centers are available to answer questions and solve
programming problems, and personnel at New Mexico Techn et handle communications
questions and problems. Questions range over a wide variety of topics, from "Why can't
my teammate log on?" to "How do I send my files to the Connection Machine?'

To call for help, most of the participants would have to use long-distance telephone
service, so they have learned to use electronic mail instead. They also use electronic mail
to get to know each other and share information about, computing and their science
topics. Teachers share experiences and information with their peers and come to realize
that they are not the only one encountering a particular problem.

Technical Coach: Teams are assigned technical coaches from either academia, a scientific
research laboratory, computer vendor or other source. The coach is someone familiar
with supercomputing and software development and is an expert in the scientific area
of the project. These people help guide the team members in selecting a do-able project,
direct them toward available resources and information, provide technical information

r 206

about the science and math required for the project, and help them select appropriate
software and the proper computing platform for the problem. The relationship between
a coach and team can be rewarding to everyone as the coach assumes the role of a mentor
to the individual team members. As one of last year's teacher expressed it, "The coach's
role is to debug the team."

Broad Base of Community Support

The Challenge is a cooperative effort sponsored by a partnership of universities,
national laboratories, businesses, and New Mexico Technet. Representatives of these
organizations oversee the general operation of the Challenge and raise funds to support it.
The day-to-day functions of the program are carried out by personnel from Los Alamos
National Laboratory, Phillips Laboratory, New M exico Tech n et, and the University of New
Mexico.

Implementation

The Challenge is divided into six phases during the academic year. Feedback from
participants as well as the organizers is continuously gathered and evaluated. Adjustments
are made to the program as needed.

Phase 1. Call for Participation: The Challenge begins at the start of the academic year with
a call for participation.Teachers and students form teams and enter the Challenge by
submitting an application form listing the team members and describing, in general
terms, the scientific area and project they plan to work on.

Phase 2. Introductory Workshop: In October, all participatingstudents and teachers are
in-; ted to a two-day workshop where they are introduced to computational science and
learn the basic skills needed to work on a supercomputer. The workshop includes hands-
on laboratories where students and teachers sign on to the supercomputer just as they
will do from their schools.

The atmosphere at the workshop is both enthusiastic and intense. At the first opening
workshop, a dance band played to an empty room while the students went to the
computing lab. At the second workshop, instead of a dance, extra lab sessions were
planned for the evening, and the students kept the rooms full until after midnight.

Phase 3. Initial Work: At r the kickoff workshop, students return to their schools to begin
tackling their problem. Many students must also learn a scientific programming
language such as Fortran or C. If a programming class is not part of their school's
curriculum, some students take a text book and learn it on their own. One teacher noted,
"Students learn much on their own and learn faster because they see a relevant need."

Phase 4. Computing: The computing phase of the project is the most exciting and
frustrating to the students. The consultants are in great demand it this time answering
programming questions and examining problems.

207

In the second year of the Challenge, two district workshops were added to provide better
support to the participants during the computing phase of the program. A team of
experts from the sponsoring organizations travels to five regional sites at colleges or
universities in the state and spends a full day at each location meeting with the teams
from that area to answer questions, give projectand programming hints, and teach skills
that the students may need to complete their projects.

Phase 5. Final Report: Teams must complete their projects by mid-April, write a final
report, and create a poster display. The reports are submitted to the panel of judges who
read them and decide on a group of finalists. The members of the finalist teams meet with
the judges to present their projects and answer questions covering both the scientific
content of the project and the knowledge of the team members. The judges want to be
sure that a project is the work of the students, not that of the teacher or coach.

The posters describing the projects are displayed at the Awards Day in late April. The
teams are always anxious to see what teams from rival schools have done. Ribbons are
presented for the best posters as determined by theviewers, and the poster receiving the
highest number of votes is incorporated into the design for the Challenge logo fog the
following year. The logo appears on a tee shirt given to all participants at the kickoff
workshop.

To accommodate the diverse computing background of the students entering the
competition, projects may bo submitted in either of two categories: competitive and
noncompetitive. Category 1 is the competitive track for teams who have made significant
progress and choose to submit their projects for judging. Category 2 is for teams who
have made progress in learning to work on a computer but were not able to make
significant progress on their problem. These reports include what the team members
have learned about the scientific area of the project and what they have learned about
supercomputers, programming, and communications.

Phase 6. Judging and Awards: Leading scientific and computing experts drawn from
research laboratories and universities in the regionare asked to participate as jud,;es.
They read the reports submitted in Category 1, choose group of finalist teams who
must give short presentations describing their projects and answer questions from the
judges. The projects are rated according to the following criteria:

Scientific content 30 points
Effectiveness of approach . 30 points
Creativity 30 points
Clarity 10 points

Total 100 points

At the culmination of the competition, all teams (whether in the competitive or
noncompetitive categories) are invited to attend a one-day awards ceremony and science
tour at Los Alamos National Laboratory, where they can see the supercomputers they
have been using and talk to scientists who use computing in their daily activities.

208

Awards for Category 1 teams in each of the first two competitions included: first-place
awards of a $1,000 sac ings bond for each student on the team and a fully equipped
work station for the school; second-place awards of a $500 savings bond for each
student on the team and a personal computer for the school. Each member of a team
that completes the Challenge by submitting a report in Category 1 or 2 receives a
momento of their participation in the program,

In addition to team excellence, individual excellence and leadership is also rewarded
with three $2000 scholarships to state universities. These awards are based on a report
written by the student to describe his/her role on the team and substantiated by letters
of recommendation from the teacher and technical coach.

Phase 7. Evaluation and Feedback: To monitor the effectiveness of the program and meet
the needs of teachers, students, and coaches, input from all participants is continually
gathered. Feedback forms are used at all workshops, the quality of the completed
projects is evaluated, and computer usage time is observed.

Results

In the initial two years of the program, the Challenge has achieved a high level of
success. The extraordinary interest among teachers and studt nts from throughout the
state was a surprise, and the organizers were delighted that 80% of the original participants
in the first year completed the Challenge. This level of interest indicates that the Challenge
is a worthwhile program, and that high school s tude nts are in tereste d in learning about and
working on supercomputers.

The students wild teachers profited from the program in many ways.

They learned about computing and science.
Horizons were expanded.
Science and technology have a greater place in their lives.
Computing is viewed as vital in science and the classroom.
Students have a new interest in science and computing as a cireer.

Additional observations after the first year of the program include the following:

The goals of promoting interest in science and computing and increasing students'
knowledge in these areas can be achieved through this type of program.
Despite frustrations and severe time constraints, students will persevere in an exc ng
program; the Challenge had a better i.han 80% completion rate.
Ongoing support is critical to identifying hurdles and addressing them rapidly.
Teachers have little time to spend on troubleshooting and seeking solutions to problems.
Technical coaches are necessary to give direction to the projects and individualized
support in science and computing. Many teachers need additional science and comput-
ing knowledge and experience, and coaches are a ready source rf relevant information.
A nonselective program is key to achieving broad participation leading to broad benefits.
The Challenge is not exclusive in terms of academic achievement or class ranking.

209

Lack of additional teacher training holds teachers back. They must rely greatly on the
technical coaches. We recognize the need to conduct inservice workshops during the
program, but lack of staff and funds has prohibited it.
Lack of equipment, telephone lines at schools, computing knowledge, and teacher and
student time have been frustrating to everyone. But continuing support has been
effective in quickly identifying and addressing these problems.

Challenge Projects

The problems that the Challenge teams choose to solve during the program show the
diversity and ingenuity of teenagers. Wh le fractals, neural networks, and astrophysicsare
popular topics, some teams are more interested in finding the optimal design for the parking
lot at the football stadium, discovering the ideal fuel to air ratio in an automobile engine,
or examining the predator/prey population in their local area. The titles of some of the
award winning projects show this diversity:

The Problem with Rings: A Simulation of the Rings of Sarum
First Place, 1991

Fractal Dimension: Theory and Compuotion
Second Place (tie), 1991

Behavior of Ions in Zeolites
Second Place (tie), 1991

Examining the Evolutionary Tendencies of a Computer
Simulated Organism with the Aid of a Genetic Algorithm
First Place, 1992

Thermal Topography: Heat Distribution in Malignant Tumors in Human Tissue
Second Place, 1992

The Simulation of Fractal Growth Using the DiffusionLimited Aggregation Process
Honorable Mention, 1992

The Congressional Redistricting of New Mexico
Honorable Mention, 1992

Some of these projects used visualization to display the results. Mai i y of the teams had
planned to incorporate graphical representation into their project, but were hindered by
lack of equipment, time, and expertise. As a project in a video production class, one member
of the 1992 winning team is trying to visually display the results of the team's work.
Enabling the teams to do more graphical representation of their projects is or.e of the
ambitions of the Challenge, and plans are being developed to achieve this.

Future Plans

The New Mexico High School Supercomputing Challenge is a dynamic program
undergoing continuous evaluation and change. As the program grows, adaptations and
improvements will be made to meet the needs of the participants and encourage a high level
of academic excellence. Wide spread participation especially among schools in disadvan
taged areas will be promoted.

210

4

To overcome the obstacles to " -'s have in using vis,Ialization in their projects, the
Challenge has established five regional graphics centers located at colleges or universities
around the state. The teams can go to the centers and use workstations to generate graphics
proems. Each center has a resident consultant who can help the students. Equipment
will be upgraded and the resident staff will be instructed to more effectively work with the
high school students and teachers.

Attention will be directed toward teacher education with additional training in
scientific computing and the use of supercomputers in science provided. Instruction in the
use and techniques of visualization will enable teachers to employ it as a teaching tool in
all areas of science. Professional development programs being considered include a
summer institute in computational science and several regional one-day in-service
workshops.

The State of New Mexico, in conjunction with U.S. West Communications and New
Mexico Technet, is developing plans to enhance the communications network so the
students at their high schools can have direct network access, instead of limited telephone
access.

Summary

The New Mexico Supercomputing Challenge is presented as a link between the
education communities and the science communities, both locally and nationally. It
enhances the knowledge of high school teachers and students in science and computing; it
increases scientists' understanding of educational realities and opportunities; and it taps
the potential for community benefits offered 1,y scientists and the energy and desire to learn
of teachers and students.

The Challenge is an effective way of encouraging students to discover the excitement
of science and computing. The enthusiasm generated by academic success can provide the
impetus to pursue a career in science and computing. By combining science and computing
with a high school activity of high visibility rind excitement, students. parents, and teachers
are attracted and will learn more about scientific computation and the multidisciplinary
approach to scientific problems.

The Challenge may serve as a model that can be enhanced and adapted by other
localities. A nationwide scheme of local programs leading to the national level could
increase the level of interest and the number of students participating in scientific and
computing endeavors and foster higher levels of academic achievement.

Without the influx of significant science and computing expertise and resources into
high school educational communities, high school teachers cannot by themselves enhance
science education. The Challenge uses scientific and computational expertise existing in
research laboratories and universities, in collaboration with education communities, to
make a difference in high school science and mathematics education.

If you would like further information about the New Mexico High School
Supercomputing Challenge, please contact

New Mexico Technet
4100 Osuna, NE, Suite 103
Albuquerque, NM 8' .103
(505) 345.6555

You may also phone Patricia Eker, Los Alamos National Laboratory, at (505) 667-3193.

211 j

Chapter 11

Sharing Multiple Complementary Representations
in the Teaching of Science

NORA H. SASELLI
IGOR S. LIVSIIITS

In this paper we will address a number of issues related to the use of visualizations in
science education from the perspective of a scientist working with visualizations to teach
his or her discipline. Some of the issues raised by this perspective help frame the work with
students that will be described; the rest are contributions to the research dialog we wish
to establish:

Multiple representations
Role of tools in science
Visualization of simulations vs. animations
Simplifications vs. complexity of real phenomena
Modes of learning

The vision that underlies our work is the power of the methodology enabled by advances
of high-performance computing and communications (HPCC) to transfoim the construc-
tion of knowledge and the development of scientific intuition, be it in seaentists or in
students entering into a complex new field. In particular, IIPCC methods and techniques
may help to:

Empower teachers and students throuidi access to desktop visualization and networked
resources;
Change the current paradigm of teacher as expert and student. as receptor;
Allow students and teachers to learn by discovery;
Allow more and more diverse students to enjoy, study, and understand science and
mathematics (Sabelli, 1991).

213

2 t.

Chemistry as a Case Study

In contrast with physics and biology (and even mathematics) education, where
mechanistic simulations have been extensively used and studied, chemistry cannot draw
on students' previous intuition to aid in their understanding. As children we all learned
over a long time the intuitive skills needed to count, measure, gauge speed and force, and
understand motion, birth, death, and growth, among other concepts. Theseconcepts (and
associated misconceptions) are macroscopic in nature and therefore observable (Larkin,
McDermott, Simon, & Simon, 1983); this is not true of many of the basic concepts of modern
chemistry as it is practiced and taught now, even at the introductory level. When we see
chemical reactions (cooking, moving cars, sun-burning, healing)we do not see what we are
taught in chemistry and therefore, often enough, we do not see "chemistry" at all. This has
led to an increased use of "cartoons" and "animations" in chemistry education in an attempt
to help students create mental models.

Since the introduction of an "atomic" theory to explain why substances combine in
fixed, constant ratios, the interpretative frame work of chemistry has been microscopic. The
electron-pair and other microscopic models that chemists have developed to interpret and
predict reactions have survived, and are indeed embedded, in computational chemistry. A
beautiful example of the merging of classical and quantum chemistry, and of their survival
as valid representations to this day, appears in Robert Mulliken's (1966) Chemistry Nobel
Prize address. Coupling simulations with visualizations (see Color Prints 7 and 8) presents
chemists with a powerful description that matches the three dimensional, dynamic nature
of their field; computational chemistry results are placed in the context of chemists'
intuitive models.

Molecules have reality; mathematical functions (wave functions or orbitals) represent
the state of electrons in a molecule, but do not have "reality' m the same sense. Wave
functions are written as mathematical expressions, which have value at every point in
sp 'ice. We extract from these molecular wave functions model constructs to a) think about
molecules with concepts derived by chemists over many decades, and b) derive calculation
procedures to predict and interpret observations. We, chemists, switch as easily between
the complementary models of orbital wave functions and elec ron orbits, as we do between
the models of delocalized and localized orbitals. We choose a model to use based on the
question we pose: if we ask about reactions, we think of hybrid localized orbitals and picture
electron jumps from one atom to another, and of bonds breaking or forming (valence-bond
picture). If we ask about spectra, or other molecular properties, we think of delocalized
molecular orbitals and excitation of electrons in the molecule (molecular orbital picture).

Chemical intuition does not come easily; students have many problems understanding
dynamic, three-dimensional processes. For example, success in handling equilibrium as
chemical algebra has been found to mask an underlying lack of chemical understanding.
Students with better understanding of chemistry may commit more errors than novices
who ignore underlying concepts while doing the algebra (Hesse & Anderson, 1988; Kozma,
Russell, Johnston, & Dersheimer, 1990). Success in studying organic chemistry has been
correlated also with the ability to rotate mental images (Prybil & Bodner, 1987), a skill found
to be gender-specific and acquired with training.

The terminology and basic toolkit of quantum chemistry (for example, atomic and
molecular orbitals, hybridization, localization) is now part of chemistry discourse; energet-
ics of reactions are routinely calculated and analyzed by chemists in all sub-specialties of
the field. The practice of chemistry has been marked by close collaboration between

214

experiment and theory; chemistry is a discipline that makes very effective use of available
computing resources in simulating the behavior of complex systems. It is in applied
industrial applications (pharmaceutical drug design, biopolyrners, catalysis and materials
science, for example) that the importance of such use becomes clear.

Teaching Difficult Concepts

Hybridization is introduced in textbooks as a fact whose details (sp; sp2; spa) are fixed.
But hybrid orbitals are only a useful shorthand to represent in a static, diagrammatic form
the energy-controlled continuous three dimensional evolution of atomic orbitals upon
formation of molecular orbitals in the presence of other atoms. The model "hybrid orbital"
is useful for thinking and communicating a more complex picture, one that uses many
mental constructs that chemists are familiar with.

There is no doubt that students need to understand both complementary views at some
point: chemists do not have a single model. Can we use visualization to make this process
easier or more intuitive? With current technology, students now may see bond formation
happen as a continuous change in density, see the energy of the combined system drop and
then rise as the distance between atoms becomes smaller, even see the changes in potential
and kinetic energy as the bond forms and see how one extracts from the integrated picture
different models to use as mental shorthand. Even better, students could see the molecule
in continuous vibration and could see the molecule in three dimensions. We have used the
word "see" for its meaning of "grasp the concept," as much as for its meaning of "observe."

Description of the Work with Teachers and Students

The focus of our work has been implementation; evaluation and research are starting,
and is being conducted in collaboration with experts. The aims of this presentation are to
encourage researchers to study the questions that our experiment and the education uses
of HPCC technology have raised.

The project described is addressed to the general high school chemistry population
working in Champaign-Urbana schools. Work continues under an NSF grant with four
high school teachers and their classes (David Bergandine, Terry Koker, Robert Miller,
Barry Rowe) and other scientists (Harrell Sellers and Kenneth Suslick). Teachers outside
Champaign-Urbana have adapted the work. As the second year of work with general
chemistry students is in progress, we will concentrate our remarks on the results of the first
year (1991) experiment, conducted primarily with AP chemistry students. The results of
current work will be published by the high school teachers working on the project.
Anecdotal information indicates that our conclusions do stand up with a different student
population.

Conversations with local high school teachers and other colleagues, and preliminary
work to develop examples for teachers to show in class, led to the j, 'int development by
NCSA and high school chemistry teachers of a prototype computer experiment centered on
the concept of ionic v. covalent bond formation. The description corresponds to work done
with Mr. Barry Rowe and his class at Centennial High School in Champaign-Urbana. The
exercise consisted on students producing short movies of the formation of a bond, as
visualized calculated electron densities, and timed to correlate with class discussion of the
topic. The molecules LiH and Li2.were chosen to minimize computing time; various and

215 4

diverse choices are being made during the present phase of the project. The calculations
were performed on NCSA's Cray Y-MP using an existing molecular orbital package
GAMESS (Schmidt et aL , 1990). GAMESS and similar packages run on many computers
of different power and cost; which computer one ultimately uses will depend on availability
of resources and on the size of the problem being studied. Current work uses NCSA DISCO
developed by Harrell Sellers (Almlof, Faegri, & Korsell, 1982; Saebti & Almlof, 1987).

NCSA software tools provide a mapping of numbers into colors. The structure of the
visualization is in the data itself, and the mapping may be manipulated interactively. The
resulting electron densities were visualized using NCSA's Image and Datascope software
on a Macintosh II; no further manipulations or animation of the densities were performed.
Characteristics of the exercise follow:

The topic was discussed in class by the teacher, and the students were encouraged to
think about what concepts they did and did not accept ("believe");
This was augmented during the laboratory with a brief, informal discussion of how
calculations are made, aimed at justifying the mathematics used from the standpoint of
basic physical concepts (potential and kinetic energy);
Students worked in pairs on Macintosh Hex workstations, where they downloaded and
visualized the density maps;
Since the visualizations were not animations or cartoons, the studentswere challenged
to extract from them the models and concepts that had been discussed in class. With the
software used, this involves manipulating color palettes to change the mapping of
numbers into colors;
Students controlled the parameters of the calculation: internuclear seraration, model
parameters (basis set size), mapping parameters (step size and the density map plane),
visualization parameters (mapping of density values to colors in NCSA Image);
Students chose or were assigned a molecule, or one of the orbitals of a molecule (Le., the
valence or core orbital).

The methodology can be best described is "visual interpretative experimentation." All
20 students in the class took part in the exercise. The students were interviewed and
videotaped at different times during the laboratory. The most significant observations
included the following:

1. Students enjoyed choosing parameters to use in the Cray calculation, and referred to
I .ir choice when interpreting visualizations; this feedback mechanism played an
important part in their successful interpretation of the results;

2. Students immediately picked up changes in the visual images and concentrated their
thinking on these changes. Students were able to argue whether the observation
corresponded to a meaningful, interpretable condition, or was an artifact of the
simulation;

3. Students followed independent exploration paths, and were able as a group to ask
themselves meaningful questions (Why are the core orbitals not showing the same effect
than the valence orbitals? How close should I bring the atoms to have thecores interact ?);

4. Students branched easily into different systems, leading the discussion in class to
additional topics that are normally part of the curriculum, but at a later date;

216

5. The previous questions and others led to an (unplanned) extremely illuminating
discussir,n of the numerical and conceptual limits of the model;

6. The first team to complete a movie of their reaction was formed by the two young women
in the class who "hate computers" and had serious misgivings about the process. This
observation has been repeated in current laboratories.

From the standpoint of the current discourse on education reform, what strikes the
authors as most interesting is the change from confusion about abstract concepts that hid
the chemistry to concrete understanding of the process on the basis of the same abstract
concepts. Here are excerpts from Mr. Rowe's evaluation:

High School chemistry students have been taught various models of the atom
over their school career, starting with "billiard ball" models; progressing
through more sophisticated models until they are challenged by the wave-
mechanical model. However, most of them accept the most sophisticated
model they can still visualize. This is usually the Bohr atom....a very
unsatisfactory model. For teenagers to accept a mathematical model, with
probabilities and electron densities determining the atom's shape, they need
more than static pictures. Static pictures, even good ones, are like an "artists'
conception" of the atom. [Several students commented independently that
they would not believe any drawing they thought was 'made up'] They could
be one man's idea of what the atoms could be.

What is very important is that the student is making the decision as to what
calculations are to be made. The distance between the atoms, the energy levels
modeled, and what atoms to model are made by the students doing the
calculation. As they animate their pictures and make the model dynamic, they
are able to explore... and determine the shape of the molecule. Before my
students modeled atoms interacting, there was a genuine reluctance to give
up their comfortable, particulate model of the electron and refusal to accept
wave mechanics. They actually argued against quantum theory, because they
could see no way that mathematics could represent something that had a
shape but was not "a piece of matter." I think these students have a better
understanding of atomic structure than most juniors in College.

Discussion

We believe that an important reason behind the success of the laboratory was the sense
of empowerment of the teacher; this has become even more notable in the second year when
four teachers work together in developing and testing materials. The teachers' increased
understanding of the chemistry involved and of its theoretical basis pushed towards a
growing sense of educational efficacy and enthusiasm.

Both teachers and students appreciated most the use of professional tools and the
insight into how the concepts studied in clas3 had been obtained This increased acceptance
of the concepts presented as valid working models was powerful motivation for
independent student work. For example, forcing the students to choose between spending
computing resources to obtain a visually clearer pictureas in the textbookand inter
polating numerical values to refine the coarser image provided students with a sense of
intellectual respect that contributed to their efforts at understanding.

0 -
217 4,

We would like to emphasize that it was not the visual interest of the images that held
the students' attention; it was the work they had to do to extract the orbital model described
in class from the visual representation of data. It would be interesting to determine if
animations would have been as successful; students enjoyed the intellectual exercise of
correlating in their minds the image with the visualization. As an example, their comments
made it very clear that they could believe the hybrid orbital in the book only as a step in a
(more complex) dynamic transformation they had obtained, when they would not believe
a cartoon of the same hybrid in the textbook. The contradiction between the students'
personal mind image and the one they produced forced them to confront model represen-
tations.

What Questions Would We Like to Have Answered?

Specifically, we want to evaluate our success before the end of this project by:

Conducting interviews with students participating in testing the modules (and who
have not participated in the development of the examples) to estimate the tools' effect
on attitudes towards science that may lead to changes in student career choices;
Working with participating teachers to gather evidence of effect of the methodology on
student understanding and motivation, as perceived by the teacher;
Working with participating teachers and others to document the additional chemistry
content areas that either may be changed or may be introduced earlier in the year, or
that may be introduced for the first time in the experimental classroom;
Monitoring students' performance and future career choices.

We will publish the results of the projectso that the approach may be extended by others
to study fundamental pedagogical questions concerning (Blumberg, Epstein, MacDonald,
& Mullis, 1986):

Novice v. expert understanding of simulations and graphical representations;
Development of mental models of basic concepts derived from complex and real
simulations;
Effect of manipulating the models on developing understanding and intuition.

Availability of tools and prototypes of classroom materials will greatly facilitate these
investigations. The project is, in a sense, an exercise in exploring the impact of expert
mentoring on teaching science. This is, to the authors, the most exciting aspect of the work:
the transformation and depth in understanding of chemistry by teachers and students
when exposed to chemistry as it is practiced. Visualization of theirown calculations with
minimal interposed interpretations give students a stake in understanding, and a way to
make concrete abstract concepts introduced iii class. Use of these concepts in a dynamic
way, and insight into the basic reasons of why models have been chosen by chemists gave
them a sense of empowerment and control.

218

Issues Revisited

Multiple Representations

A glance at any general chemistry textbook shows a multiplicity of representations
used in different contexts with no correlation between representations or why any one was
chosen. Some students may switch contexts easily; most not integrate the knowledge or
extract from them representations to ideas experts derive from them. Experts do use
different models and switch easily between them when solving problems. Without the
ability to cross-reference, novices tend to believe each representations as a complete model
of the concept being illustrated (Reif, 1987). Redundant knowledge allows the expert to
check the accuracy of each line of reasoning (NSF 92.4, 1992).

Even if our interest is not to form experts, understanding the process may help us think
through issues of constructing knowledge. The process remains, in fact, one of apprentice-
ship and practice. One may even extend the analysis and separate the education of a
scientist into education in techniquestechnos: craft, artificewhere formal methods
(courses, books) dominate, and one of application of the techniques or education in
methods--meta: beyond, hodos: way. In the last one, practice and apprenticeship still play
a fundamental role.

We need to develop better techniques for sharing multiple mental models between
experts and students, and to help students develop the ability to choose a proper model. It
is a truism that the way we teach is conditioned by the tools that students have to solve
problems. Computer graphic representations are being used to show students different
ways of seeing diagrams (Brasell, 1987). Yet students develop intuition by doing, not by
seeing, and this is precisely what the new technologies allow us to consider (Smith & Jones,
1989). The ability to understand how laws and principles (of science) behave in a new
domain, not only what the laws are (intuition), is an important goal of modern science
education (diSessa, 1987). This ability is at the core of the significant changes brought by
HPCC to science, particularly in discipline areas where microscopic phenomena control
macroscopic, observable behavior.

Role of Tools in Science

An analysis of the use of tools in science is useful in understanding how to define an
enabling language to be shared by experts and novices. To understand tools it is useful to
categorize them according to their relation with content: tools with specific content vs. tools
without specific content.

Tools that incorporate content-specific information are usually discipline-oriented,
require prior discipline-specific knowledge, and are useful for categorizing observations
and analyzing information (e.g., chemical notation language and chemical algebra). These
tools differ from discipline to discipline and do not encourage integration of process
understanding. Tools without any content-specific information are interdisciplinary and
are useful for understanding and integrating observations (e.g., language and mathemat-
ics). In education, computers are often used as tools with content. in science, a conceptually

219 X4,.0 0

significant use of computer visualization is an interdisciplinary aid to understanding and
communicating (as a tool without content).

It is our contention that general, interdisciplinary, content-free tools, used and
controlled interactively by the learner in the context of guided exploration of interpreta-
tions and models, provide a mechanism for constructing knowledge and for sharing
methods and representations with the experts that developed these interpretations. This
is in contrast with education software or courseware which may help in a different context.
"Tools" enable the transference of concepts and modes of thinking between disciplines,and
may provide a richer basis for constructing scientific knowledge.

Visualization of Simulations vs. Animations

Linn and Eylon (1988) refer to the study of electrical circuits where geometrical
orientations and relations of the graphic representations of the circuits often took
precedence over the technical, underlying principlese.g., in-parallel or in-series resistors.
This points to an analysis of the different meanings associated with the wordvisualization.

Visualization, whether it refers to output (data) or processes, has been used to indicate
either animation (the arbitrary representation ofan explanation) or process- or data-driven
interpretations; this last meaning is the one we use. For example, theprocess of iterative
inversion of a matrix of random numbers may be visualized by assigning colors to numbers
and seeing the evolution of patterns into a diagonal For clarity, in thispresentation we use
"visualization" as a short hand for "visual interpretative experimentation." In both
animation and visualization the student may have control of the process, though often in
the case of animations he or she does not.

Visualization has two aspects which are now converging. The most visible visualiza-
tions have an aspect of animationassigning discrete surfaces topatterns in datawhile
software is now becoming available to help the individual scientist or student develop
visualizations for e,..i"rationdevelopment of a visual language. There is a great danger
that the beauty and "neatness" of one-time-only passive visualizations and animations will
lead novices to see truth where there is none; the process of visualizing data is as important
as the result. The itse of low-level, desktop-based, manipulation of numbers as color maps
for exploration and understanding has the greatest potential education.

Simplifications us. Complexity of Real Phenomena

Some concepts are more complex when simplified. A classical example is the interpre-
tation of Vitamin B12 crystal structure by Dorothy Hodgkin. Her group etched slices of X-
Ray spectra on thin glass slabs and collected the slabs intoa three-dimensional solid. Only
then were they able to account for the effect that heavy atoms on one slice had on the pattern
etched in other slices. The structure was unsolvable in the two dimensional, simplified
approach, yet manageable in three.

We often present students with similar "simplifications." E me, by virtue of our reliance
on the printed page (or the projected screen). Others, by virtue of our use of model
simplifications that seem real to the students while being only a shorthand notation to be
used or discarded as needed. To understand science outside the classroom, students need
to understand how complexity (often, nonlinearity) affects the models used to explain
concepts. They need to understand how simulations are affected by approximations in the
calculation and in the model, and understand the difference between simulations (compu-

22i

220

tational experiments) and laboratory experiments. Normally students do not learn what
complexity really means; they do not have the chance to see the models they study crumble
and break under the weight of non-linear growth. Every student should have the chance
to see a simulation break down in his or her face; this is the most effective way in which he
or she may learn how problems scale up.

Modes of Learning

Introducing reallife complexity ties into the desire to show students what science really
is and what scientists really do. Scientists do not extract and explore relationships, but the
results in the real world of objects represented in those relationships. It has often been
remarked that the way we teach science (technically as well as sociologically) (Tobias, 1990)
tends to select for the same ability (mode of learning) common now in the profession:
analytical, mathematically oriented. In the case of chemistry, for example, it is not clear
that this ability is more important than the visual ability for three dimensional imaging.
In fact, we doubt that many natural product chemists of the past would feel comfortable
with the way high school teachers and chemists teach chemistry.

Exploring "how laws behave" first and allowing students to manipulate the laws may
make teaching "what the laws are" more relevant and understandable and increase the
sense of achievement of many students. The question then arises, what should we teach
first? Will our strategy work better with students that are now (or culturally) excluded from
personal achievement in science?

We would like to end with a note sent to us earlier this year by Mr. Rowe:

I posted color pictures of the images my students generated on the inside
of the teachers' lounge door, with a note that the AP Chemistry students
had generated these images. A French teacher told me that she was in
there after school one day and 2 sophomore students knocked on the door
and asked to come in to collect the cans for recycling. She said OK, and
went in to the lavatory. When she returned they had the cans in their
boxes, but were stGisped and staring at the images. They were discussing
what they meantpointing out what must be covalent bonds, and
commenting how they must be orbitals overlapping! These are kids that
are in General Cheri .try, not AP! I guess that is a pretty strong
argument that what we are doing is a good idea!!

Now on to solutions!! [One of the future modules will deal with solvation]

Barry

221 4. 3

References

Aimlof, J., Faegri, K Jr., & Korsell, K. (1982). DISCO. J. Comput.Chem., 3, 385.
Blumberg, F., Epstein, M., MacDonald, W., ei Mullis, I. (1986). Apilot study of higher-order

thinking skills assessment techniques in science and mathematics. Final Report, Part
1. NAEP. Princeton.

Brasell, H. (1987). The effect of real-time graphics on learning graphic representations of
distance and velocity. Journal of Research in Science Teaching, 24, 385.

diSessa, A. (1987). Journal of Research in Science Teaching, 24, 351.
Eylon, B., & Linn, M.C. (1988). Review of Educational Research, 58, 251.
Fulfilling the promise: Biology education in the nation's schools. (1990). Washington, DC:

National Research Council
Hesse, J., & Anderson, C. (1988). Student's conceptions of chemical change. Paper

presented at the American Educational Research Association Meeting, New Orleans.
Hodgkin, D. Seminar Presentation, University of Chicago.
Kozma, R., Russell, J., Johnston, J.,& Dersheimer, C. (1990). College student's conceptions

and misconceptions of chemical equilibrium. Paper presented at the American
Educational Research Association Meeting, Boston.

Larkin, J.H., McDermott, J., Simon, D.P., & Simon, 11.A. (1980). Expert and novice
performance in solving physics problems. Science, 208, 1335.

The liberal art o f science: Agenda for action. (1990). Washington, DC: American Association
for the Advancement of Science.

Linn, M.C. (1989). Science education and the challenge of technology. Information
Technologies and Science Education (AE7'S) 1988 Yearbook, 119.

McCloskey, M. (1983). Naive theories of motion. In D. Gentner & AL. Stevens (Eds.),
Mental models. Erbaum Associates.

Mulliken, R.S. (1966). Spectroscopy, molecular orbitals and chemical bonding. Nobel
Lecture for Chemistry.

Prybil, J. R. , & Bodner, G. M. (1987). Spatial ability and its role in organic chemistry: A study
of four organic courses. Journal of Research in Science Teaching, 24, 229.

Reif, F. (1987). Instructional design, cognition and technology: Application to the teaching
of scie itific concepts. Journal f Research in Science Teaching, 24, 309.

Report on the National Science Foundation disciplinary workshops on undergraduate
education. (1989). Washington, DC: NSF.

Rowe, B. (1992). Orbital insights. NCSA Real7ime, 4, 4.
Sabelli, N. (1991). Computational science and education: Workshop on the role of HPCC

centers in education. NSF Grant ASC-9018011.
Saebo, S., & Almlof, J. (1987). DISCO. Chem. Phys.Lett., 154, 521.
Schmidt, M.W., Baldridge, K.K. , Boatz, J.A, Jensen, J.H., Koseki, S. Gordon, M.S.,

Nguyen, K.A , Windus, I.L., & Elbert, S.T. (1990). GAMESS. QCPE Bulletin, 10, 52.
Smith, S.G., & Jones, L.L. (1989). The FIPSE lectures: Chemistry plus technology plus

teachers. Journal of Chemical Education, 6c, 3, 8.
To strengthen American cognitive science for the twenty-first century. (1992). Report NSF

924. Washington, DC: NSF.
Tobias, S. (1990). 'They're not dumb, they're different. Stalking the Second Tier Research

Corporation. Tucson, AZ.

2224, y

Appendix
Background: NCSA's role

This chapter is a report of work in progress, an advocacy statement, and what we hope
will be part of a continuing exploration by us and others. The work described has been
guided by the role that a national center such as NCSA may and should pia in education
and by the lessons learned from the success, in both education and research, of NCSA's
scientific visualizations and workstation-based software tools. NCSA is not a deliverer of
education, nor does it have education research expertise; rather, it is most productive as a
resource knowledgeable in technology, science methodology, and their transfer.

The National Center for Supercomputing Applications (NCSA), with a staff of approx.
200, is housed in 70,000 square feet of space spread across five buildings at the University
of Illinois, Urbana-Champaign (URJC). NCSA is one of over 20 research programs located
in the Beckman Institute for Advanced Science and Technology at URIC, a broadly-based
interdisciplinary research institute.

NCSA was created in 1985 to meet an urgent national goal: to provide a broad base of
researchers in American universities with access to supercomputers over a national
network to create a large human resource pool in advanced computational science and
engineering (CS&E). Focus for the 1990s has shifted to development in new technologies
and computing architectures, and to serving the needs of emerging user communities.
Current technological development will lead to a scalable computational structure that is
software compatible, from desktop workstations to powerful supercomputers.

NCSA is now prep aring for the changi ng world of the next five years: transforming from
a "vector processor supercomputer access center" into a "high-performance computing
center." The focus will be on exploring new architectures, application software development
driven by CS&E Grand Challenges, and human resources development including initia-
tives in K-12 and undergraduate education.

The work of NCSA in the area of K-12 education focuses on using High-Pei formance
Computing and Communications (HPCC) methodologies to rethink science education and
define the role of computational science in education, and on enlarging the constituency for
advanced computing technology in education. Li both cases, the objective is to use NCSA's
expertise to develop prototype methods rnd materials for dissemination to the wider
community. NCSA is in the best position to bring the leading edge of technology to schools
since

NCSA is a common meeting ground for schools and organizations, locally and nationally;
NCSA has the visibility and resources to make educational technology programs
national and widely used;
NCSA not only uses HPCC technology, it controls H PCC technology for the benefit of
education and research.

NCSA is a supercomputing center, and its expertise is associated with supercomputing.
NCSA does not define its role or its mission by the equipment in use, but by the
methodologycomputational sciencethat the technology has enabled. It is how technol-
ogy has empowered scientists to "look" at their work that must be understood and
tranderred. The rate of technology advance is such that our answers may be needed before

223

we have time to fully understand them; limiting our thought to the workstations available
now limits the options open to students in many ways.

In particular, few students have now direct access to workstations of enough power or
with the right software and support to engage in significant explorations. High perfor-
mance computers with professionally supported software are accessible to increasing
numbers of students, and such resources may provide an important "leveling of the playing
field." The National Science Foundation and the Department of Energy high-performance
computer centers support student access, even in the absence of full connections to the
national network (Internet). The combination of networking technology and the existence
of these centers enable educators to use resources other than those available locally, and
thus, expand the options open to all students.

Many groups have pointed out the need to increase the involvement practicing
scientists and engineers with teachers, students, and with the science l,ducation process in
general Increasing the familiarity of teachers and students with the tool sof expert mentors
will serve this need well: "...since science students are not experts, the tools of experts did
not automatically impart the problem solving skills of experts. Rather, these toolsprovided
an opportunity for teachers, researchers and developers to focus on roles and materials that
would help students to develop complex reasoning skills" (Linn, 1989).

NCSA would like to help understand and implement the complementary roles that
affordable computer simulations, modeling, visualizations, and networking (i.e., HPCC
technology) may play in bringing the studying of science and the doing of science closer
together (American Association for the Advancement of Science, 1990; National Research
Council, 1990; National Science Foundation 1989; Linn, 1989). Exploration of science
education pedagogy and associated cognitive issues will benefit from integration of
educational tools with software tooLs that experts use. Providing these integrated tools is
one of our aims. Defining the capabilities of the tools is a research topic that calls for
collaboration between content science researcl,ffs, education technologists, and cognitive
and education researchers.

224

Chapter 12

Edu ation and Collaboration in an Evolving Digital Culture

DONNA J. Cox

Scientific visualization is the process of using computer graphics to represent data
initially expressed in numbers. This process is not new. It has been emerging since the
beginning of computer graphics in the early 60s. Within the last six years, scientific
visualization has grown exponentially due to growth in other technologies such as
supercomputers, data gathering, and other related fields. The process involves organizing
and mapping numerical data into meaningful visual and aural re-presentations. This
process has enabled some scientists to refine and comprehend their models. Resulting
scientific visualizations can also provide opportunities to educate large audiences, stu-
dents, and teachers about areas of science and mathematics that have been difficult to
conceptualize (Cox, 1987a, 1988a, 1990a, 1991b, 1991c, 1992a, 1992b).

Modelling reality is both an important concept in the history of culture (Cox, 1988b,
1989) and a quest in modern science that employs supercomputers and scientific visualiza-
tion. Today, computational scientists compute quantitative models of physical reality
Smarr, 1985, 1987; Brown, 1987). Scientific visualization provides a means of literally

peering into these models by using the computer.
Unfortunately, few people have both the scientific background and the artistic training

needed to do this work well. Most artists are Nit prepared for the technological and
mathematical demands of using computer graphics and mapping numerical data that is
required for the visualization process Yet most artists have demonstrated expertise in
visual communication and can make significant contributions to the field of scientific
visualization in terms of representational experiments. The other side of this educational
coin is that scientists are not prepared for the complexities involved in imagemaking, post-
production, cinematography, and animation. The team approach is a possible solution to
these research and educational problems. The artist can contribute t-; the direction of the
scientific visualization representation process while working with technically proficient

225 0

scientists and computer experts. The Renaissance Team is a group of specialists who
synergistically collaborate to expand therange of options available in the quest for solutions
to specific communication problems (Cox, 1988b). The term "artist" is used here in a broad
sense. The artist might be a cinematographer, a graphic designer, an industrial designer,
or a person wearing a different label that has demonstrated talent for visual communica-
tion. When the "art" of visual-thinking is appliedto scientific visualization, its function has
been labeled information design. The complementary abilities and perspectives among
artists and scientists can enhance one another, and this interaction ;s the raison d'etre of
the Renaissance Team. There appears to be a movement away from the team approach
toward the creation of tools that allow scientists to be self-sufficient in scientific visualiza-
tion.

I will address some important issues in scientific visualization and computer graphics
education. In the following, I explore areas where scientists and artists can continue to
collaborate in scientific visualization and educate, raise awareness, and transfer technol-
ogy.

The Renaissance of Visualization

Renaissance artists represented and documented their world's every visual element,
giving particular attention to detail. Through this imitation of life, they believed that they
might capture the essence of life and reveal the invisible laws of nature. Such philosophy
set the stage for the Scientific Revolution and the pri:iciples of modern scientific method-
ology that include direct, objective observation of mality and the recording of factual data
to form scientific hypotheses. Renaissance artists fostered this approach and worked with
biologists and physicians to create a plethora of interdisciplinary books on anatomy and
botony (Ronan, 1982).

The classical ideal of striving to imitate visual reality is found in the history of computer
graphics and science. Computer graphics researchers have developed algorithms and
images that represent what the human eye optically perceives. Computer-synthesized
photorealistic imagery requires high-performance computing and advanced algorithms.
These graphics algorithms often include simple laws ofphysics and procedural techniques
to create the illusion of realism. In fact, one mightsay that many computer graphics images
provide a "visual proof' of relatively simple equations that mimic light, surfaces, reflection ,

etc. These visualizations that mimic photorealistic imagery are often referred to as "visual
simulations."

An important distinction must be made here between "making things look real" and
scientifically computing "models of reality." The primarygoal of Computational Science is
not merely to simulate the optical appearance of reality, but to simulate models that
precisely and completely describe real physical systems. Computational Science is directly
linked to the supercomputer revolution because of the necessity for high performance
computing environments that provide maximum computer memory, speed, disk store, and
networking bandwidth to model the complexity of dynamical systems. These computation-
al simulations produce large data sets, and scientificvisualization provides a way to visually
explore the simulation data.

Computational science and supercomputing are not the only reasons that the field of
scientific visualization is growingvery rapidly. Another driving force is the terabytes of data

9
4, 0 LS

226

being collected today with many observational stations on earth and in space. Human
beings are collecting data at a rate beyond what we can actually study. Supercomputers
have become necessary for computational science and scientific simulations, as well as
processing data to create visualizations.

The task of modelling a complex dynamical system such as the biosphere and
visualizing the results requires more computing power than has currently been invented.
It is the hope of most computational scientists that supercomputers will get bigger and
faster to accommodate the modelling of reality. This "reality" is epistemologically related
to the Renaissance idea that the essence of life can be captured in the imitation of life, for
in computational science the accuracy of the model, its nearness to replicating "real life,"
denotes its degree of "realism." One of the oxymorons that has evolved from these ideas is
a "real simulation."

The current popularity of scientific visualization is the relatively recent recognition by
the scientific research community that visual apprehension is far more acute than the
ability to assimilate the same information expressed only as numerical data. The physical
and conscious visual processing mechanisms enable humans to actively create and give
meaning to the world about them (Friedhoff& Benson, 1989). Historically, many advances
in technology are coupled to advances in imaging techniques due to this human predispo-
sition to visually probe, capture, and make sense of the universe. Compare the crown of a
splashing milkdrop, frozen by ultra-h igh-sp red photography, to the infinitesimal corona of
a cosmic ray impact on a copper plate, visible through the electron microscope, to the
perimeter of a massive crater left by a meteorite on Mars, revealed through a high power
telescope. These cosmic splashes are far removed from one another in time and space, yet
humans can immediately see a connection. An observer can extrapolate from these images
to understand the concept of a "splash." To intellectually extrapolate among these "cosmic"
splashes is high-order visual thinking.

Visual thinking has been demonstrated throughout the history of art and education.
The capacity to visually extrapolate between observable data and computed data is crucial
to science. Scientists compare familiar observable phenomena to numerical simulations
that describe the physical laws.

There has evolved a deep chasm between the education methodology art versus science.
Artists are not prepared mathematically or technically for todays high-tech digital culture.
Likewise, most science students are not provided with the visual thinking skills that are
often demonstrated as necessary in developing scientific visualizations. The educational
system has ferreted out the visually-oriented people from the technically-oriented people.
Computer graphics is a field where these individuals and their skills converge. The
computer graphics technology has provided a neutral ground where artists and scientists
share the same tools. As it was in the Renaissance where artists and scientists shared tools
and worked in tandem, so today we can find interdisciplinary teams devoted to scientific
visualization.

Will Renaissance Teams Continue?

The educational requirements for mathematical and technical skills have historically
contributed to the chasm between the arts and the sciences. The requirements are so
fundamentally different between these areas in universities that students learn in ways
that are mutually exclusive. Art students are not required to have any serious level of math

227

or computer skills Science students are required to focus on skills that do not encourage
visual th inking. Since the invention of computer graphics, artistsand scientists have begun
to converge through the use of similar graphics tools. Likewise, the growth of scientific
animations have brought together artistic editors, scientists, and computer animators in
Renaissance Teams.

Successful teamwork requires a group strategy and the adoption of behaviors by each
member of the group that promote effectiveness: first, the team must identify a common
goal (e.g., scientific visualization) and should contain thesmallest complement of members
capable of most efficiently accomplishing that goal; second, each team member must
recognize that the project will be personally rewarding, must acknowledge every other
team member's contribution to the project, and must exhibit respect for other team
members and be willing to learn from them; finally, each team member must be given
appropriate credit when results of the project are presented. It is a challenge to organize
such groups of people who adopt all of the above behaviors. While the above is a generic
formula for success, most people who are required to work on teams rarely exhibit all of the
above behaviors.

The author has been successful with Renaissance Teams in the research and develop-
ment of scientific visualizations. Part of the success has been because of the informal,
academic nature of the projects and also because these teams have involved individuals
with similar value systems and mutual respect. Such teams often evolve into friendships.
Collaborations among team members have generated a range of visualization productions
and tools that span many disciplines. The choice of how the data gets mapped to what type
of visual representation is extraordinarily complex and open-ended. The visual represen-
tation choice or the interface design can influence how one understands the data. These
issues can call to qu estion ethics, truth , and beauty in scientific visualizations (Brown, 1989;
Cox, 1987b, 1990b, 1991a, 1991d, 1994; Ellson & Cox, 1988; Onstad et al., 1390).

As scientific visualization has proliferated, many scientists have requested, and justly
so, to be self-sufficient in the visualization process. A scientist once said to me that his goal
was to embed my talents into the visualization software so that the Renaissance Team was
not necessary. This embedding of talent is resulting in useful visualization software which
might possibly be the demise cf Renaissance Teams as we know them today. I have
generated a taxonomy of visualization techniques and a classification of research that are
provided at many Centers. The following is an edited excerpt from my contribution to the
National Center for Supercomputing Applications (NCSA) Program Plan FY93:

The NSF Supercomputer Centers have been international leaders in scien-
tific visualization. A primary reason for this accomplishment is because the
Centers have provided a broad continuum of resources from low -end desktop tools
to modules for data flow environments to remote-user facilities to high-end
production visualizations. The value to the scientific community and transfer of
technology as a whole can, in part, be measured by the 100,000s of people
accessing visualization tools via the Internet as wellas millions of people who have
been exposed to science and high performance computing via televised program-
ming and scientific visualizations.

Over the past seven years of scientific visualization escalation, we have
discovered a broad class of functionalities, and each class makes an important
contribution to the field. These can be categorized as follows.

J
228

1. Low-end interactive, desktop graphics/audio tools for data analysis
(NCSA Suite, Data scope, Spyglass); These types of tools have often
been the fast and easy road to discovery in data. These tools generally:

are easy to learn;
provide a very short time loop between human and data
are supported on relatively inexpensive, well-established user plat-
forms and thus provide a portability not found in specialized interac-
tive tools;
provide functionality for multiple disciplines;
provide both sonification as well as visual data exploration;
have visual representations and/or functionalities often adapted from
more expensive platforms/productions;
provide flexibility for human communications not currently found in
specialized interactive tools;
lend themselves to education;
do not provide extremely refined imagery ("extremely refined" here is
used as a term to describe im agery th at is smoothly re nde re d with high
production values and requires batch mode animation capability. This
type of production imagery cannot currently be computed in real-
time).

2. Specialized interactive tools for visualization and data analysis (RIV-
ERS, SDSC Volumetric Visualization, Virtual Reality, High-Defini-
tion workstatit,,, s). Generally these tools:

have addressed specific user needs in the original development or
design;
require users to be proficient, mentored, or trained;
are developed on expensive, highly-specialized platforms;
address a specific discipline or type of application;
require systems development or support;
are expensive to maintain;
provide interactivity that animations do not provide;
provide both sonification as well as visual data exploration;
have features that have migrated to less expensive platforms;
provide greater speed than low-end tools and increase efficiency of
scientist;
require dedicated software development and maintenance.

3. Data flow environments (e.g., AVS, SGI Explorer, Ap E) have been one
of the graphics industry's answers to specialized scientific visualiza-
tion tools. These data flow environments generally:

provide users with the flexibility to customize the interactive environ-
ment;
provide a mechanism for portability of visualization modules;
require a level of sophistication in software development in order to
develop modules;
provide a mechanism to interactively explore relatively large data
sets;
are useful for personal discovery process as well as presentation to
peers;

229 t; 0

BEST COPY AVAILABLE

require specialized platforms for the modules (there is intense compe-
tition for one of these data flow environments toemerge as a standard);
provide an interactivity that animations do not provide;
can be customized for multiple disciplines;
do not provide extremely refined imagery.

4 Peer batch-mode visualizations (not interactive and result in a video
tape animation). These animations generally:

are specialized for scientific peers and are intended for small audiences;
are developed by the scientist for a specific discipline;
are algorithmically tied to the simulation and do not explore alternate
visual representations of the data;
provide the scientist with a mechanism to research his/her data that
cannot be built into a tool;
require software support and maintenance that is not transportable
across many platforms;
require the viewer to have intimate knowledge of the subject in order
to fully understand the visualization;
require the scientist to have graphics visualization knowledgeto some
degree as well as image file formating capability;
do not require verbal scripting, expert packaging, or detailed refine-
ment of visual quality;
can feed directly back into visual representations used for interactive
tool development;
can use LW, Video Mac frame-recording, Macro-mind director script-
ing, and editing (however, image quality is less than Abekas frame-
recording);
do not have production quality that make them us, 'ul for television,
movies, or advanced presentation graphics;
can sometimes be packaged into formats for the following high-end
presentation production visualizations;

5. I ligh -end presentation productionvisualization animations generally:

are batch-mode using high-end software and hardware;
require computer graphics and/or communications experts to assist
scientists in the production;
provide flexibility to explore visual representation techniques that
data flow environments and interactive tools cannot provide to date;
allow a relatively sophisticated presentation of data, often used for
conferences, competitions, television, and movie presentations;
are used to develop the most advanced visual representations possi-
ble;
provide visual representations that are sometimes incorporated into
interactive tool development or data flow modules;
are useful to multiple disciplines;
are educational, informative, and raise awareness for large general
audiences;
are choreographed, voiced-over, scripted, edited, titled, and post-
produced;

2304. 4

involve production of e xtremely refined imagery and require attention
to detail;
can incorporate audio as well as visual exploration of data;
require a production environment with software support and mainte-
nance;
can document and/illustrate important results and concepts in a field;
are appropriate for high- definition imagery.

The above represents a continuum that enables development of ad-
vanced visualization techniques across disciplines and empowers indi-
viduals using visualization as an indispensible tool for data exploration.

Many of the above visualization tools/techniques do not require teamwork, though
teams are often involved in the development of the software tools. While artists can
contribute on many levels, it seems that there are definite trends in scientific visualization:
to shorten the feedback loop between scientist and data; to have interactive, real-time tools
to explore data; and to move away from batch-mode animations that require extensive
rendering time. These trends that might allow the scientist autonomy, also do not
encourage interdisciplinary collaboration.

Strategy for Visualization in Teaching

In the Renaissance, collaboration was a working model. However, by the turn of the
20th century, art and science diverged along separate paths (Caren, 1986; Weininger,
1990). Today, most scientific research is performed by individuals separated by disciplines
and specialities. Only in "big" science has there remained a need for researchers to
collaborate and pool resources on large-scale projects like the space program or
supercolliders (Baker, 1986). Yet, collaboration often plays a major role in industrial
careers, art forms, filmmaking, computer animation, soware tool development, and
hardware design. In most higher education, undergraduates and graduates do not get a
real-world understanding of the importance of collaboration or how collaboration will play
a role in career development. In particular, collaboration between the arts and sciences
within a university setting is almost nil. The process of collaboration is a skill that can be
coupled to computer graphics and scientific visualization education. In my university
courses, I put teams together of computer scientist/engineer students and art/design
students to develop specific projects in scientific visualization and scientific communication
(Cox, 1991c, 1992b). My courses are intensively rigorous, to the point that the Computer
Science department gives undergraduate and graduate credit. The production animations/
visualizations from this course are educational and entertaining, and they have won
international awards.

I contend that scientific visualization is not a product; rather, it is a process. Students
and researchers need to be taken through this process with the understanding that they
will grow out of old techniques, into new ones. The following is a reorganization of the former
taxonomy. We can see that existing tools and animations are valuable for a range of
educational experiences.

231

I. Interactive, desktop graphics/audio tools for data analysis (NCSA Suite, Data scope,
Spyglass) are generally extremely useful for education because they are relatively easy
to learn and provide a very short time loop between students and data. They are
generally supported on relatively inexpensive, well-established user platforms such as
Macintoshes which many schools have. Students tend to retain information and
interactively learn faster because of direct "hands-on" experience of using thecomputer
for exploration. The primary disadvantages are that this level of computers can be slow,
and they definitely need teacher preparation for classroom instruction. This requires
teachers to learn the software, in addition to having knowledge of the subject.

2. Specialized interactive visualization tools for data analysis (RIVERS, SDSC Volumetric
Visualization, Virtual Reality, High-Definition workstations) are generally not useful
for the classroom because they are too specialized and require expensive platforms.
However, if one documents these environments by using them as demonstrations for
educational video programs, the specialization allows one to educate students about
potential future areas of research.

3. Data flow environments (e.g., AVS, SG I Explorer, ApE) unfortunately require advanced
graphics workstations that most schools cannot afford. However, they would be
generally useful for university education because the modules could be written by
advanced students or scientists for the educational setting. They provide a mechanism
to interactively explore relatively large data sets and would accelerate the learning
process. Thus, they would provide an interactivity that animations do not provide and
they can be customized for multiple disciplines.

4. Scientific peer batch-mode visualizations that result in a video tripe can be useful for
education; however, they are generally not as refined as the above production visualiza-
tions. They are generally targeted fora specific scientific peer audience and require some
type of explanation from either a teacher and scientist to make them useful for student
education. Unfortunately, unless they are packaged with educational materials or
explanations, they would require the teacher to understand the subject fully in order to
teach with the animation. If they were repackaged, they could be transferred to other
multimedia formats as the above production visualizations. Most of these types of
animations are only understandable by peer scientists but could be usedas raw material
for an educational setting or perhaps packaged into presentation production visualiza-
tions.

5. Presentation production visualizations require animation recording equipment and
production capabilities that schools cannot usually afford. However, those schools that
have animation capabilities would find these productions valuable as "hands-on
experiences" for students. These types of experiences provide flexibility for students to
explore visual representation techniques.

If schools cannot afford animation production equipment or computers, they can often
use video tape players to show students animation productions that already exist or are
produced elsewhere. These animation video tapes can be useful as educational tapes in
the classroom. These types of productions which demonstrate and explain science and
concepts allow a relatively sophisticated presentation of data, This is why these

232

animations are often used for conferences, competitions, television, and movies. They
are useful to multiple disciplines and require interdisciplinary teams to produce the
high-quality visualizations. They involve voice-over scripts and are presented in an
education,,. and informative way for the large, general audience. They can document
and/illustrate important results and concepts that would be impossible or difficult for
other types of interactive tools. They are packaged material that facilitates the teacher
in a classroom.

Interdisciplinary collaborations have by far produced the most exciting and stimulat-
ing animations. They have become intellectually rich visual communications. Presentation
production visualizations have resulted in outstanding works that will go down in the
history of art/science endeavors. These productions are akin to great collaborative films (see
Color Print 9). It is here that the animations are extremely valuable for education and
informal science. Truly these types of productions can contribute to the "storytelling" of
science and mathematics. This type of "storytelling" is entertaining and inspires youth to
participate and learn science and mathematics. Scientific discoveries that are only
published in rigorousjuriedjournals remain esoteric to the masses. Only a small percentage
of people per year will ever read these types of peer-reviewed articles. Presentation
productions help make abstract science and math much more accessible to larger numbers
of people.

The continuum is complete when the educational, "hands-on" process is provided in the
classroom. Low-end, interactive computer tools provide an excellent way to teach mathe-
matics and science because of the interactivity and the participatory nature of the tools.
Both interactive tools and production visualizations provide a variety of ways to transfer
technology to students. One can reach many students through television or video programs,
but for retention and active learning, students must have "hands-on" access to computer
graphics tools.

Collaboration and Networks

In collaboration with Robert Patterson, we have produced several data visualizations
of the NSFnet Internet growth and traffic. Robert developed software, co-directed, and
animated the visualizations. We have designed animations for both general and peer
audiences. The data for these visualizations was accessed over "The Net" via file transfer
protocal (ftp) with the help of Merit Network Inc. The High Performance Computing and
Communications initiative has placed a great importance on network and communications
development that will link educators, researchers, and industry. Robert and I have
visualized some of the first animations of the internet that demonstrate rapid growth and
very heavy, sustained activity.

The connection space (see Color Print 10) represents virtual connections among sites
to a T1 NSF backbone. The sites might connect to this backbone via ethernet, fiber, cable,
or other physical connections with variable bandwidth speeds. Once on the T1 NSF
backbone, information flows at a relatively very fast rate. This backbone will soon be
upgraded to T3 and the speed of information flow will increase. These connections represent
a space where people using computers can communicate, send/receive data, and control
computer programs remotely. A mass communications subculture has evolved from this

233

4.

technological capability that would allow students of all ages to access information
databases and digital images from any geographic location. Scientific visualization will
inevitably become a part of research, education, and the information exchange futures.
Remote collaboration over "The Net" will become easier and more productive within this
evolving digital culture.

Conclusion

Collaboration across the arts and sciences has waxed and waned over the history of
civilization. Scientific visualization provides a new role for the artist/scientist as collabora-
tors in important areas of scientific communication. Images are instruments of this
communication. Scientific visualization is not a product, it is a process that allows an
enormous amount of information to be understood. Skills possessed by artists extend the
storytelling capability of rigorous science and enhance communication of abstract concepts.
While these images will remain documents of the collaborations that produce them, the
deeper cultural significance of, and the subtle social effects of artists working with
scientists, may never be completely documented.

Scientific and data visualization will continue to grow; the technology on every front
is pointing in that direction. Visual communication of the sciences lends itself to interdis-
ciplinary collaboration and education. As educators, we must not only encourage technical
and scientific skills, we must also encourage skills to enhance the collaborative and
communication process. In the future, collaboration among individuals may take a new
form as a result of the evolving communications technology. Networking and visualization
will be integral to the information age where collaboration over "The Net" is part and parcel
of our new digital culture.

References

Baker, W. (1986). NASA: America in space. New York: Michael Friedman Publishing
Group.

Brown, M.D., DeFanti, T.A. , & McCormick, B. (1987, November). Visualization in scientific
computing. Computer Graphics, 21 (6).

Brown, J.R., & Cunningham, S. (1989). Programming the UserInterface: Principles and
examples. New York: Wiley.

Careri, G. (1986). Art and science in search of non-visible worlds. Leonardo, 19(4), 275.
Cox, D.J. (1987a). Computer art/design curricula in universities: Beyond the traditional

approach. Teaching computer graphics: An interdisciplinary approach (pp. 207-223).
Siggraph '87 Educator's Workshop Course Notes. Published by the Association for
Computing Machinery's Special Interest Group on Computer Graphics in cooperation
with the IEEE Technical Committee on Computer Graphics.

Cox, D.J. (1987b). Interactive Computer-Assisted RGB Editor (ICARE). Proceedings for the
7th Symposium on Small Computers in the Arts (pp.40-45).

Cox, D.J. (1988a). Renaissance teams and scientific visualization: A convergence of art and
science. Collaboration in Computer Graphics Education, SIGGRAPH '88 Educator's
Workshop Proceedings (pp. 81-104).

,

234

Cox, D.J.(1988b). Using the supercomputer to visualize Higher Dimensions: An artist's

contribution to scientific visualization. Leonardo: 21 Journal of Art, Science card

Technology, pp. 233-242.
Cox, D.J. (1989). The Tao ofPostmodernism: Computer art, scientific visualization, and

other paradoxes. ACM SIGGRAPH '89 Art Show Catalogue, ComputerArt in Context,

Leonardo Supplemental Issue (pp.7.12).
Cox, D.J. (1990a, Winter). Scientific visualization: Collaborating to predict the future.

ED UCOM Review, pp. 38-42.
Cox, D.J. (1990b) Scientificvisualization: Mapping information. Proceedings, AUSGRAPH

'90, 1990 (pp. 101-106). Published by the Australian Computer Graphics Association.

Cox, D.J. (1991a, November). Beyond visualization: Mappinginformation. Supercomputing

91 Tutorial Notes.
Cox, D.J.(1991b, June 6). Collaborations in art/science: Renaissance teams. The Journal of

Biocommunications, 18(2).
Cox, D.J. (1991c, July). Interdisciplinary collaboration case study in computer graphics

education: "Venus & Milo." ACM SIGGRAPH Computer Graphics, 25 (3), 185-190.

Cox, D.J. (1991d). Scientificvisualization: Supercomputing & Renaissance teams. Proceed-

ings of the 12th New Zealand Computer Cc. ference (pp. 157-171).

Cox, D.J. (1992a). Caricature, readymades, and metamorphosis: Visual mathematics in the

context of art. Leonardo, 25 (3/4), 295-302.

Cox, D.J. (1992b). Collaborative computer graphics education. In S. Cunningham & R.J.

Hubbold (Eds.), Interactive learning through Visualization: The impact of computer

graphics in education (pp. 189-200). Berlin: Springer-Verlag.
Cox, D.J. (1994). Glitzy or grungy graphics: Choose your audience. AAAS '94 Program and

Abstracts (pp. 93-94). 160 National Meeting of the American Association for the

Advancement of Science, for panel "Science, Lies, & Videotapes," San Francisco, CA

Ellson, R., & Cox, D.J. (1988). Visualization of injection molding. Simulation: Journal of the

Society for Computer Simulation, 51(5), 184-188.

Freidhoff, R.M., &Benson, W. (1989). Visualization: The second computer revolution. New

York: Harry N. Abrams.
Onstad, D.W., Maddox, J.V., Cox, D.J., & Kornkven, E.A. (1990, January). Spatial and

temporal dynamics of animals and the host-density threshold in epizootiology. Journal

,,f Invertebrate Pathology.
Ronan, C. A (1982). Science, its history and development among the world's cultures. New

York: Hamlyn Publishing Group Ltd.
Smarr, L. (1985). An approach to complexity: Numerical computations. Science,

228(4698), 403-8.
Smarr, L.(1987). The computational science revolution: Technology, methodology, and

sociology. In R. B. Wilhelmson (Ed.), High-speed computing: Scientific applications

and algorithm design. University of Illinois Press.
Weininger, S. (1990, January 8). Science and "the humanities" are wedded, not divorced.

The Scientist, pp. 15-17.

235

Chapter 13

The Hypergraphics Honors Seminar at Illinois

GEORGE K. FRANCIS

One edition of Math 198, the Freshman Honors Seminar in Mathematics at the
University of Illinois at Urbana-Champaign, is an intensive introduction to real time
interactive geometrical programming. Its name. "Hypergraphics," connects to David
Brisson's (1978) proposed synthesis of art and mathematics for the purpose of revealing the
mysteries of space beyond the confines of our 3-dimensional perception (Banchoff, 1990).

The course is designed for novices, but experienced programmers are welcome,
provided they contract for an individual study p roj ect commensurate with their skills. Most
beginners also reach a level of competence by the middle of the course to complete a project
of their own. Students work on Apple Llgs and Silicon Graphics Iris computers. They
program in BASIC, Forth, and C. Of course, these languages are augmented by graphics
packages. For the first, &-GRAFIX is a machine language extension of Applesoft BASIC
which was written by students in the UIMATH.APPLE I ab over the past four years
(Sandy ig, 1990). The ISYS Forth compiler is the product of a local software engineer (Illyes,
1988). It was developed, to a large extent, with the needs of the Apple Lab in mind. The
graphics library on the Iris, known as gl, is such an effective resource that it is possible to
learn enough basic C to write a respectable real-time interactive computer animation
project during just one seine iter.

The students in this elec ive course are generally members of the University of Illinois
Campus Honors Program , hich selects 500 bright students from a population of 27,000
undergraduates. Thus, the members of my classroom compare well with the students
taking similar courses at private universities. For example, a somewhat similar course at
Princeton was taught and reported on by Conway, Doyle, and Thurston (1901)

In this chapter I shall describe my course in some technical detail so that the reader may
not only profit from my experience but may weigh the basis of my opinions regarding high-

237
.

4,, 1 ,)

tech education. Respecting the principle that a mathematicspaper should always contain
"something old, something new, something borrowed, and something true," I include the
complete, annotated, 250-line source-code for illiSnail, a real-time interactive computer
animation (RTICA) which my students use, study, and modify on the Iris 4D/25TG
computers in the Renaissance Experimental Laboratory (REL) of the National Center for
Supercomputing Applications (NCSA) of the University of Illinois at Urbana-Champaign
(UIUC).

Portrait of an Honors Student

Let me begin, by way of an anecdotal documentation, by sketching the activities of a
recent, not atypical student. Pablo was technically a freshman but came to college with an
excellent preparation. Together with his prodigious talent, this allowed him to compete
with the juniors and seniors for first place in the class of fifteen. Pablo's first "essay" was
a whimsical animation in &-GRAFIX of swimming fish blowing bubbles. His second was
the best of only three solutions for an assignment to write a concise, recursive program in
Forth that draws a Sierpinski Triangle. The class studies a series of very simple programs
which are small enough to fit into gyre's mental "hip-pocket" and can be played on every
computer. Pablo's "commentary" on the one for the lesson on Logistic Chaos was to modify
it and so draw the well known bifurcation diagram of this famous dynamical system.

Two years ago, my teaching assistant, Glenn Chappell, had brought with him a superb
piece of pedagogical software. His t rogram is written in BASIC and 65816 machine
language. It is, in fact, an interpreter for a tiny language, CSL, which Glenn invented for
simulating the cellular automata popularized by Kee Dewdney in the pages of the Scientific
American. Pablo completed the assigned experiments with CSL, comparing them intelli-
gently to their older Forth versions. In my graduate Geometrical Graphicscourse on the
Irises, we develop RTICAs which have a feature for recording the user's activity in a script
which can then be played back automatically. Although such student projects are often
user-hostile, they deal with interesting topics that appeal to the honors students. The
"movie-making' feature makes it possible to incorporate them into lessons for Math 198.
Pablo's cohort used the Snailhunt RTICA to explore a certain Mobius band located on the
3-dimensional hypersphere in 4-space (Francis, 1990). (This RTICA is discussed in detail
in a later section of this chapter.) Pablo's movie and brief documentation showed an unusual
level of curiosity and good mathematical free association. He manipulated the program to
produce fanciful shapes reminiscent of public art on the Daley Plaza in Chicago. Working
out the answers to the conjectures he made could have become his semester project. But he
chose a much more ambitious one: to implement Carter Bay's 3-dimensional version of
Conway's Game of Life as described in Dewdney's (1988) popular book, The Armchair
IJaiverse.

Pablo' s project was the most notab le achievement in that class. He wrote his own RTI CA
of a 3-dimensional Life automaton. With only a high school AP-Pascal course behind him,
he learned and mastered C/Unix/gl on the Iris and wrote a program few of the students in
my graduate course could write. The more ambitious student projects often receive
extensive help from the staff. Pablo managed all that pretty much on his own.

238

Pedagogical Notes

Although Math 198 is similar to Thurston's Math 199 at Princeton (Conway, Doyle, &
Thurston, 1991), there are enough differences to warrant a closer comparison of these two
courses. In fact, my Math 198 more closely resembles the two-week intensive course,
"Geometry and the Imagination," taught by John Conway, Peter Doyle, Jane Gilman, and
William Thurston at the Geometry Center, summer 1991. Their course was followed by a
ten-week research and training program for some of the high school and college students
who took the short course. This permitted the completion of substantial projects, some of
which included computer visualization (Marden, 1991).

Math 198 at Illinois is a 3 credit course, though all, including the instructor and the
teaching assistant, spend far more time on this course than is customary for an undergrad-
uate course with 3 assigned contact hours per week. Quality educp ion at a large, state
supported university requires such dedication and extra effort.

The Project

Each student has a project to complete. The project presentation has an oral component.
This takes place during the final week of the semester, seminar-style and with cake and sort-
drink refreshments. Typically, the student explains what the program is about and how to
operate it. An abbreviated version of hands-on demonstration earlier in the course is
followed (sometimes preceded) by a 10-20 minute lecture at the white-board. The demon-
stration and segments of the mini-lecture are videotaped. The demo taping is occasionally
staged and repeated to improve its quality. However, little of the mini-lecture and none of
the discussion is taped, to encourage both presenter and audience to express themselves
freely. Our unexpected experience is that, unlike the author's generation, members of
today's TV generation show practically no camera shyness or stage fright. Also, they know
how the videotapes will be used: They are shown at the Honors House on special occasions
for instance, to visiting parents ofprospective participants. Older students, who are h elping
out during these orientation sessions, are delighted to watch their colleagues "perform"
their final for Math 198. Last, year's tapes are also shown in class to explain to the students
what is expected of them.

The Grade

A. second major difference from the Princeton course is how the final grade is
determined A course like Math 198 is unsuitable for either a pass/fail or a standard grading
scheme. The temptation to procrastinate or merely audit such a course is too great,
especially for the freshman and sophomore. On the other hand, inhomogeneity of
preparation, experience, and motivation precludes competitive examinations and compar-
ative evaluation. Instead, each student receives a "contract-grade" according to the
following announced and periodically repeated formula. Once the student has completed
the basic assignments and tutorials, he has earned a "gentleman's C' for the course. All that
needs to be done for an A is to complete the semester project. A student whose project is well
started but incomplete receives a B. This can be changed to an A once the missing work is
submitted.

I have never had to give the gentleman's C, and the drop rate is about 1 to 2 students
per class of 15.20 students. Of course, everyone is individually evaluated to facilitate

239 4, 1 3

writing recommendations, which many students in the Campus Honors Program eventu-
ally request. Also, generous praise and encouragementare offered privately as needed.

The plan for the project is negotiated with the instructor. The pre-proposa' proposal,
progress report, and (rarely) preliminary draft are carefully monitored and commented on.
The principle guiding the choice and ambitiousness of the project is for the student to apply
newly acquired mathematical and computing skills The project is complete insofar as the
pr Aram works, has been publicly presented, and the written documentation is acceptable.
The latter includes a one-page operating instruction, a carefulspecification of the hardware
configuration, a narrative essay with bibliography on the mathematics, a hand-annotated
printout of the program, and a technical note on computational difficulties that were solved
or remain to be solved by the next student building on the present project. The class
materials are to a large extent the work of previous students, often with emphasison their
shortcomings. Thus some of the best projects each year are corrected continuations and
extensions of previous projects. The p roj ect is treated as a contractual agreement to p roduce
a certain piece of work by a del line.

Manipulatives

The Princeton course makes excellent use of geometrical artifacts, including mirrors
and construction kits. We make no extensive use of physical models or experiments, except
on the computers and, to a much lesser extent, with video equipmilit. This is entirely the
consequence of our severely limited physical facilities at Illinois.

The Journal

In the Princeton course the student keeps a bound journal into which assignments,
class notes, and other appropriate items are either pasted (ifcomplet don a word-processor)
or entered by hand. While I have always encouraged my students to keep a 3-ring notebook
for handouts, clean copies of their class notes., homework, and tests, I had assigned the
keeping of an "intellectual journal" only last year after learning about its use in the
Princeton course. In the fall we assigned journal keeping to some 100 students, who were
preparing to become elementary st hool teachers, in the lecture/lab course on "Experimental
Arithmetic" (Francis, 1992) which also has a programmingproject component. The logistics
of this multisection course, the immaturity of the students, and our neglect to collect the
journals regularly and monitor their content, led to the failure of this first experiment. On
examination at the end of the semester, 90percent of the journalswere nothing more than
daily diaries which recorded the trials and tribulations ofan unfamiliar and difficult lab
course. Except for the psychological benefits of catharsis for the students and scathing
criticism for the instructional staff, these journals were a waste of resources. Quite the
contrary was the case for the journals kept by the Math 198 students the following spring.
I explained from the start the Princeton model of the journal, including its pros and cons,
and invited my students to experiment with their own format. The only requirement was
that the hard-bound journals (no fair tea ring out pages) had ample margins and blank even -
pages for comments and corrections. The journals were collected and read two or three
times during the semester and commented on, copiously in some cases. A written exchange
developed between student and t, acher in a few journals, an almost Victorian dialogue of
glosses. On the first round, about a third of the students had nearly empty journals or
started writing a diary instead. Most of these had mended their way by the time of the

0
240

second reading. Some of the journals were astoundingly good right from the start. Of
course, one must not forget the exceptionally verbal, high honors cohort taking Math 198.

The journals proved io have unexpected benefits also for the professor, not the least of
which was the fact that a 10x15 inch, black, hardbound journal is difficult to lose or
misplace. Secondly, it provided an opportunity for individual instruction. Erroneous or
incomplete journal entries prompted me to write a mini-lesson right into the journal. This
information and elaboration beyond the class instruction went directly to the interested
student, without wasting other people's time. Finally, cumulative progress could be
monitored over the semester without having to decipher the numerically encoded entries
of a gradebook. I even got a second chance to correct my own misleading "corrections" on
re reading them at a later time.

Facilities

Math 198 has been taught for three years in succession in an essentially identical
fashion. This particular configuration of hardware, software, students, instructors and
content was based on the experience with different configurations of related courses taught
under the auspices of the UIMATH.APPLE Lab since 1983. It was therefore uniquely
suited to its academic environment. Without similar experimentation and fine tuning it is
unlikely that such a course can be successfully taught in another environment. Neverthe-
less, we hope that a careful description of its configuration below will be of use also to
someone planning such a course under their own circumstances.

The Student Cohort

Math 198 is for students in the Campus Honors Program, but others with comparable
credentials may also take the course. The University of Illinois Campus Honors Program
admits, on a competitive basis, circa 500 students from an undergraduate student body of
ca 27,000. Or, approximately 100 students from over 600 applicants join the program each
fall. (The difference is made up of students who join the program at a later time.) The
quality, motivation, and preparation of these students therefore is not dissimilar frorn those
for whom the Princeton course was designed. Math 198 is officially an elective for freshmen.
Its curriculum is the instructor's choice. Since the course under the present discussion, and
its predecessors, is the only version of Math 198 which treats programming graphics
computers, no ambiguity results from referring to it simply as Math 198,

In a class of 15-20 students, a third tend to be freshmen, the others range over all three
remaining years. Typically, five are novices with respect to computer programming, four
are so proficient that they volunteer to help train the novices, and the remainder can
program in at least one language on at least one computer. Occasionally, a freshman is
among the computer proficient, but juniors or seniors who are computer novices are
discouraged from taking the course. The students are usually science or engineering
majors, though there are always one or two from the humanities or the fine arts. There have
never been any students from agriculture, commerce, or the social sciences. Two or three
students are women.

Not surprisingly, all students have had calculus, trigonometry, and analytic geometry,
at least in high school. The majority are concurrently enrolled in a middle level course in

differential equations, linear algebra, geometry, physics, or computer science, so that their
projects are almost invariably related to topics studied in these related courses.

Instruction

The professor and his teaching assistant both meet the students for an average of five
hours a week in lecture and lab. The course carries 3 credits, but the schedule is so arranged
that the lab component is contiguous with the formal instruction. The topics are strongly
modularized so that they can be variously selected and arranged to maximize their
relevancy to the students' current interest and capacity. A 5-10 minute introduction is
followed by a 15-30 minute hands-on tutorial on the computer. Thiscan be in the form of
operating, analyzing, modifying, and experimenting with a pocket program (see below) on
the Apple IIgs. On the Iris it usually means operating an RTICA to perform a particular set
of experiments and recording the outcomes (observations) on a work sheet or in a notebook.

Hardware

The computers used at the high and the low end are standardized. Each student has
access to a fully networked Personal Iris 4D/25TG in the Renaissance Experimental
Laboratory (REL) of the National Center for Supercomputing Applications (NCSA). These
Irises have 24 bit RGB framebuffers with a 24 bit hardware Z-buffer and graphics
accelerators. This configuration suffices for real-time interaction with fully animated,
rendered and lighted scenes containing 1 to 5 separate graphics objects.

Half the class sessions take place in REL, the other half in the Apple Lab. There the
students use 20 independent, 9-year-old Apple Ile computers which have been upgraded
to be a IIgs with (effectively) 4-bit RGB color or 4-bit gray- scale Z-buffer.

In addition, many students own popular micro computers, and the University provides
access to Macintosh and 1BM sites. While these sites are very useful for word processing,
they are uniformly useless for Math 198. Students with computers in their rooms are
permitted (weaker students are encouraged) to structure their projects in a way that
maximizes their using personal equipment for graphics and mathematical algorithms. Of
course, it remains their responsibility make sure that the project can be demonstrated to
the entire class on some computer in a publicly acceisiblf: location.

Software

On the Iris we use a propr'etary but close variant of the Unix operating system, the
MIPS C-compiler, and the standard graphics library supplied by Silicon Graphics. All
students use real-time interactive computer animations (RTICA) written by and for
students in the graduate course I teach in REL, or as projects by previous undergraduates
in Math 198. (An example of such a program is listed and discussed in the last section of
this chapter.)Those with sufficient experience (beginning with Pascal proficiency) are
encouraged to master the rudiments of an editor (vi, emacs, or jot) to try their hand at
programming. For novices in C, Unix, and gl, there is a graduated collection ofprograms
to study and modify. For the more advanced student (a few of whom already have some
experience programming an Iris) there are projects by previous students to study, improve,
and frequently rebuild from scratch.

242

For the Apple Ilgs we have a considerable accumulation of student and instructor
developed software, most of it in 65816 machine language, which extends the native
Applesoft BASIC resident in the IIgs ROM. The most popular of these is Sandvig's
gs.ampernew. This contains a large number of graphics primitives which fit into an
ordinary Applesoft program much the same way as calls to the Iris graphics library fit into
a C-program. Much more versatile is Robert Illyes' (1988) Forthcompiler, ISYSFORTH/GS,
which is specifically adapted and optimized for Apple IIgs graphics. Both languages were
developed with the needs of the Apple I ab in mind, and both permit us to use the Apple IIgs
as a simple, understandable "toy-version" of a "grown-up" graphics computer like the Iris.

Applesoft BASIC extended with &-GRAFIX is commonly used for projects by people
who have never programmed mathematics before. Forth is mostly used to tease the last
ounce of performance colt of our Apples, and to introduce certain concepts such as cellular
automata, recursion and object oriented programming in an analytical fashion. In Forth,
the student can reach every corner of the computer and even mess with the machine-stack,
something which it is not recommended they do on Macs, IBMs and Irises.

On their private machines, the students generally program in TURBOPascal and a
variety of C-compilers. A popular project for someone who just acquired an brand new 386
or 486 box with a good but user-hostile graphics card is to write their own high level graphics
library, sometimes with machine-language routines for certain primitives (lines, fills,
rotations, for example). It should be emphasized here that in the instructional part of the
course, geometry is assisted by computer graphics. But, in the projects, it is usually the
other way around.

Content

We have developed a number of different techniques of introducing various topics into
the course. Here we shall report on only two of these, the pocket program for any personal
computer, and an RTICA on the Iris graphics workstation.

Pocket Graphics Programs

These are simple programs that do non-simple things. They also contain working
examples of useful techniques. A pocket program expresses one idea in as economical a way
as possible within a given language. It is a program one carries around in one's mental
pocket, to be produced on demand, and implemented on whatever computer is at hand. It
is primarily a didactic instrument. The dozen or so pocket program in Math 198 first of all
serve to introduce the student to the major themes of the course. Together, they provide the
skeleton on which to hang the concept of computer geometry. Finally, they focus the effort
of learning a new language or mastering a new graphics card by way of something concrete
to translate or implement. Let me illustrate what I inean by describing two of the pocket
programs on adjacent topics.

The Sierpinski Gasket

This is a planar Cantor set obtained by recursively removing the central quarter of a
triangle. Connecting the midpoints of the sides of a triangle decomposes the area into four
congruent triangles similar to the parent triangle. Inflicting this excision toeach of the

243
A; o

three daughter triangles, and their offspring in turn, leaves a figure whose fractal
dimension is easily demonstrated. Self similarity shows that doubling the side-size of the
Gasket triples the measurable content of the figure. If, by analogy to lines, squares, cubes
and tesseracts, "dimension" is defined to be that power of 2 the content of a figure must be
multiplied by in order for it to equal the content of a similar figure obtained by doubling its
linear scale, theti

1 < d = log2(3) < 2

Here is a curious way of generating a Sierpinski Gasket due to Michael Barnsley. For
the traditional description, see Banchoff (1990, p. 32). Barnsley (1988, p.179) invented it to
illustrate an Iterated Function System. It can be expressed in eight lines of classical BASIC.

10 REM SIERPINSKI

20 X=100:Y=50

30 CLS : REM INIT GRAPHICS

40 FOR I= 0 TO 2:READ XF(I),YF(I):NEXT

50 DATA 0,32, 100,0, 100,63

60 J=INT(31iND(1))
70 X=(X+XF(J))/2:Y=(Y+YF(J))/2

80 PSET (X,Y) : REM PLOT POINT

90 GOTO 60

This program moves a point to a new position which is halfway from its current position
towards a randomly chosen one of three fixed points. This stochasticdynamical system has
a fractal attractor.

This program uses only two graphics primitives: initializing graphics on the Radio
Shack TRs.so Model 100 with the clear-screen commandon line 30, and plotting the point
(X ,Y) on line 80. It is appropriate that the vertices of the triangle be given as an array, line
40, because this simplifies how the choice, line 60, is made each time through the loop. Since
line 40 can be written as

40 READ XF(0), YF(0), XF(1), YF(1), XF(2), YF(2)

it is also a gentle introduction to a counted loop. The compact READ/DATA format is
convenient here to express the triangle as a geometrical object in terms of its display-list.

Even at this basic level the program above invites experimentation. Replacing the fixed
initial position, line 20, by a user INPUT statement, and later by a random choice,
underscores the fact that the gasket is a universal attractor. Altering the number of
vertices, lines 40.50, and the proportion away from 1/2 in line 70, leadsto some remarkable
discoveries. For example, last spring Monica Plisch discovered variants of this iterated
function system, whose attractors were other well known fractal figures, such as Koch's
Snowflake. A small generalization, using a color computer, leads to a surprising variation
discovered spontaneously by many students. It makes an instructive difference whether
one sets the colon to number J on line 75 or on line 85. The former identifies the three sub-
gaskets. The latter, recording the color of the previous choice, gives a visual clue of how

)

ijJ
244

iterated function systems work in the first place. Barnsley's maple leaf (1988, p.108) is not
too far away at this stage of the tutorial.

On the other hand, on the Iris it is an easy generalization to 3- and 4- dimensional
iterated function systems, which provides a nice motivation to a more formal treatment of
a semigroup of contracting affine transformations.

Pocket Dynamical Systems

The exact number and identity of pocket programs used in any given instance of Math
198 is not fixed. Only their use and purpose remains the same from year to year. A large
collection of concepts, most of them new to the student, are more effectively taught by way
of examples than in a systematic syllabus of abstractions. Training in the vocabulary of
comparative anatomy is not needed to enjoy a visit to the zoo. One needs an intelligent
arrangement of live examples from each of the major zoological classes, together with brief
descriptions that do not neglect the homologies between different species.

More than half of the students in Math 198 major in the traditional (hard) sciences.
Thus the notion of a dynamical system is one of the themes to be developed thoroughly. 7.":::1
Hirsch and Smale (1974, p.159) we favor this definition: "A dynamical system is a way of
describing the passage in time of all points of a given space" The Sierpinski Gasket
iterated function system is a kind of dynamical system, albeit a stochastic one. A dynamical
system moves a point to a new position according to a rule which depends only on the
coordinates of the point being moved. In the present case there are three rules to choose
from, and the program uses a generator of pseudo-random numbers to choose which of the
three rules to follow each time. When there is only one rule, one says that the dynamical
system is deterministic. One calls the stream of fractions returned by successive calls to
RND(1) "pseudo-random" because they only seem random to us because we are ignorant of
the algorithm that producc5 them. Of course, this algorithm is designed to mimic a true
random number generator as well as the programmer can manage.

The Sierpinski Gasket is the attractor of this dynamical system. Informally speaking,
this means that it is a set of points towards which each trajectory (or orbit) tends. The
succession of positions taken by a point under the influence of a dynamical system is called
the orbit or trajectory of its original initial position. The attractor should also be an invariant
set, that is, the trajectory of a point in the set never leaves it. Here is a more traditional
example of a dynamical system.

The Lorenz Mask

The next pocket program is also a dynamical system insofar as a rule inside an eternal
loop (lines 60,70, and 80) moves the point (X,Y,Z) initially set on line 10, along a trajectory.
This time, however, the dynamical system is frankly deterministic; there is no call to a
pseudo-random number generator because there is only one rule to choose from.

C:
245 I

5 REM LORENZ
10 X=0.9:Y=0.12=0:CLS

20 READ XO,YO,UX,UY,E,N,D

25 DATA 120,32,1,-1,.05,-50,.02

30 XR =XO-N : XL=X0+N

40 YP=Y0+Y*UY:REM LOOP HERE
50 PSET((L+(X-E*Z)*UX,YP)

55 PSET(XR+(X+E7)*UY,YP)
60 X1=X+10*(Y-X)*D

70 Y1=Y+(28*X-X*Z-Y)*D

80 Z1=Z+(X*Y-13Z/3)*D

90 X=X1:Y=Y1:Z=Z1:GOTO 40

It is a 3-dimensional dynamical system because the point being moved has 3 compo-
nents. This raises the problem of how to represent 3-dimensional data in the two dimensions
of a picture. On a slow computer, with a coarse-grained, monochrome video display, the best
way to do this is by means of stereo- pairs, On faster machines with more advanced graphics
primitives there are other ways of achieving the illusion of 3-dimensional plasticity. Here
is the list in the order of presentation in Math 198: perspective, depth-cueing, motion, z-
buffering, shading.

Stereo-pairs are viewed with the help of devices which insure that your right eye sees
one image, while your left eye sees an image of the same scene from a slightly different
angle. Our visual system is very forgiving. It is not necessary to compute these two views
very accurately, which would slow things down even more. Here we use a small shear, lines
50 and 55, to ar, proximate binocular vision. A shear is a distortion which moves a rectangle
to a parallelogram without changing its base or altitude. Think of a stack of playing cards
pushed uniformly to one side.

In the absence of helpful optical devices it is easier to cross your eyes. So, shift the right -

eyed view to the left, and vice versa. Cross your eyes by focusing at an object, e.g. pencil
tip, roughly halfway from your nose to the screen. Wait until you see three rather than four
fuzzy images. Then wait until the middle one comes into sharp focus. On the printed page,
the images are smaller and closer together. Here the view for the right eye is on the right.
These can be viewed unaided by focusing your eyes at infinity (not crossed). One way of
achieving this is to place your nose right up to the image until your eyes are relaxed
(unconverged, unfocused). Then move the page back slowly until the fused, 3-D image
jumps into focus. To reverse right with left in the pmgram, change the sign of the nose offset,
N, or the eye-shear fraction, E, but not both.

The shape you see developing is called the Lorenz Mask and it is a very popular example
of a strange attractor. Strictly 2-dimensional dynamical systems do not need the complica-
tion of ctereo-viewing. On the other hand, they don't have strange attractors. The Lorenz
is also a favorite character in Nonlinear Mechanics because the rule that reads the velocity
at a point is not a linear function of the coordinates of the point.

The iteration loop begins at line 40. This program uses both world and screen
coordinates. On line 40, the vertical screen coordinate, YP is obtained by adding the fraction
Y of the vertical unit UY to the vertical origin YO. This interprets the world coordinate Y
as a fraction (proper and improper) of the fixed vertical displacement. It is an example of
the axonometric projection from 3 to 2 space. Such a projection may be described informally
as follows. Draw three line segments in the picture plane, the x,y,z-axes, from a common

246

ki

point, the origin. The axonometric image of a point (a,b,c) in 3-space is located at the end

of a path that begins at the origin 0, moves along the x-axis to point A forwhich the segment

OA has the ratio a : 1 to the axis, then moves parallel to the y-axis a ratio b : 1, then aratio

c : 1 parallel to the z-axis.
In lines 50,55, the horizontal displacement from the left-origin, respectively right-

origin, is computed. Starting from the true displacement, X, as seen by the cyclopean eye

(in the middle of your forehead), which is the same for both eyes at the point you are looking

at, it becomes progressively greater as the point recedes into the background, ie., as the z-

coordinate becomes greater.
In lines 60-80, the world point (X,Y,Z) is moved the small fraction D along a

displacement, the velocity vector, which itself depends on the current position. The reason

this simplest of all numerical integration techniques is perfectly adequate here is that the

dynamical system has a strong attractor. Even if at each step the computed point moves to

another, nearby trajectory, it will converge to the attractor anyway.

The Third Dimension

Effective management of the depth illusion is a major theme in Math 198 since one

aspect of the course is to "perceive" 4-dimensional reality in its 3-dimensional "shadows."

When only one method is used to indicate depth, any momentary ambiguity spoils the

illusion, blinking while looking at a Necker cube, for example. So a second method, depth -

cueing for example, is good insurance. This means that points further back are drawn more

dimly than those in front. The Apple IIgs has 4-bit color pixels; that is, a pixel may be

assigned one of 16 shades of gray proportional to the distance of the point from the viewer.

Cary Sandvig's graphics package has a number of pixel-operations built into it. A pixel-

operation is simply the ability of storing the result of a logical operation between the color

number about to be assigned to a pixel and the number that is already there. Standard point

plotters just overwrite the old pixel. The pixel function that replaces two numbers by their

maximum is the one used here to simulate depth-cueing. Another pixel function, the

exclusive-or function, is used for simulating separate pixel planes, for example a cursorthat

can pass through a picture without alteration.
The next, mechanically more demanding object, is a depth-cued line. This is useful to

improve the legibility of a rotating cube, or hypercube. For this we switch to ISYSForth

because it compiles code that is fast enough to rotate simple wire-frames composed of user-

built line-segments. That is, the student learning the Bresenham line drawing algorithm

can implement it in Forth together with personalized pixel operations. Very simple

polygonal surfaces can be rendered in a way that simulates Z-buffering by programming

scan-lines that fill triangles. The pixeloperations make it possible to program a limitedbut

recognizable texture map simulation.
Most Math 198 students are eager to skip over these details and move to the Iris where

such graphics are library primitives. Son e, however, take the opportunity to become more

deeply involved with graphics primitives and, for their class project, produced an ML and

C based graphics package for their own personal 386 based home computers.
This is as good a place as any to defend Math 198 against the charge of being a course

which teaches computer engineering without a license. There is mathematics in every-

247

thing, and the study of anything sufficiently interesting to bright students becomesmathematics when the epistemological approach itself is analytical rather than merelypractical and goal oriented.

Hypergraphics on the Iris

At this point in the course interest and attention begin to bifurcate. Cellular automataand Mandelbrot sets can still be done on the Apples using the (by now familiar) languagesof &-GRAFIX, CSL and ISYSForth. Some students now experiment with possible projectsusing these methods. All students migrate to the Iris lab for a 3-week introduction to
geometrical graphics. We next discuss the source code for illiSnail This example is typicalof the RTICAs we use for anything from a 30 minute hands-on demo to a two week summerworkshop for math teachers.

The Curriculum

In the first lab session the students learn to control the animation. For illiSnail thisentails flying through a Mains band so stretched that its boundary lies in a plane. It looksvaguely snail-like. I first saw a wire mesh model of this surfacehanging from the ceilingof Bernard Morin's office in Strasbourg. According to Larry Siebenmann (1982) the
engineer Michel Pintard made a wire model like this in the 1930s. Pintard had studiedtopology with Hadamard. I was deeply impressed by the beautiful, computer generated 16mm film of this surface made by Dan Asimov and Doug Lerner (1984) at LawrenceLivermore National Laboratory with a Cray -1 supercomputer. But I had to wait for the Iris4D to write a real-time, interactive computer animation. In fact, this surface is aninteresting example of a significant class of ruled, minimal surfaces in spaces with ellipticgeometry, such as the 3-sphere in 4space. The RTICAis capable ofgeneratingseveral othersignificant surfaces, such as Steiner's Roman Surface the Clifford Torus and Lawson's
MinimalKleinbottle, a portion of whichconstitutes Brehm's Trefoil Knotbox. The exercisesare listed at the end of the chapter. (See also Color Prints 11 and 12.)

In the second session, students learn the geometry of these surfaces and theirhomotopies. The third session is a survey of the internal operation of theprogram. It servesas an introduction to geometric computer graphics. In the fourth and lastcommon session,all students use the RTICA (or minor modifications of it) to produce a brief (1.2 minute)animation by recording their manipulations in a script file. This is the "lab-report"recording the results of their exploration into hypergraphics.

The Program

The program listed here is actually a condensation into a single file of several RTICAs
of graded difficulty and sophistication. It was designedon a Personal Iris 4D/25G using Irix
3.3.1. It was recomp iled on some other systems using Irix 4.0 to increase our confidence that,with some minor tinkering, this code will run on any Iris. There are still a few bugs in it,only some of whichare intentional It is an old Navajo custom to weave an error into everyblanket to forestall the temptation to imagine the work to be perfect.

For the sake of brevity we omitted several useful and instructivefeatures, in particularChris Hartman's script writer and object maker. Both produce textfiles. An illiScript

t.)

248

captures the key-presses and so recreates the animation by reading it back into the same
RTICA. An illiObject is the display list for a particular stage of a hornotopy of the surface.
It is intended to be used by a more elaborate and sophisticated surface viewing program.
The reader may obtain the source code for illiSnail from the author. Videotapes showing
solutions to the exercises below, and other experiments, may be obtained from the NCSA
(Francis, Chappell, & Hartman, 1994).

This program is written in "vanilla-C," using only a few of the most useful functions in
the Iris graphics library. No attempt was made to write the program in exemplary C. Nor
does its style conform to standard rules of "pretty printing." In Math 198 we treat programs
like proofs, in which the visual space occupied by a symbol is roughly proportional to its
mathematical importance. The program is meant to be studied and "unpacked" slowly
before it is modified or rewritten. In particular, students are encouraged to practice using
the editor of their choice on the Iris to rewrite the code in their favorite style. One time, a
student translated a C-program into Fortran in order to understand it. Ironically, it had
been translated from Fortran to C for the purpose of teaching it to the class. Common
programming problems often have more than one solution in C. For any given problem, the
absolutely optimal or most elegant solutions was generally not used, mainly because I
probably don't know it. The student is certainly welcome to teach the teacher a trick or two.
So, without further apologies, here is a print-out of the code which I shall document with
just sufficient detail to be of profit to anyone with access to an Iris computer with the
standard ANSI-C compiler and the shared libraries in its directories.

Fra%slo, Slen 2naplseil and Chris Hartrran
Xatnerasiss 2epart:rent and NCSA /
:2, l'49: Boars' sf Tristees */

/* Unversity of l.iinois, l:rtana, 211inois 61801 */
*,

iescendant of knottsx.s, c'ibevert.:
/* as version 11/2l.?: */
$1,ncl.-de 71.n, ;* grapnics library *I

devire.h> ,* devise library */
*:ns:ude kmatn.h: natheraticai licrary *;

*define
define
*define
*define
*define
*define
*define
define
*define
*define
*define
*define
*define
*define
*define
*define

XAX
m:N
ABS (,,
D3

S't'
FOR'a,r,c,
CF'K
SCAKO,,
T.2.3GLE (K, f

CFSH:FT
?FESS A,b
PFESS A, c,

LABEL x,y,W,-)
DCT (aa,br)
NRXIaa

(,x<y)?y:x)

HA<C,)?-x:x)
X 1,218C.

ss(t*DG)
fsin(t*DG)
for;ab;a<c:a-)
f(getbutton(K))
while(getbutton(K))
2F(K)1.*1-f; SOAK(K);
f(getbutton(LEFTSHIFTKEY):Igettutton(RIGHTSKiFTKEY))
7(F)2FSHIFTA;else(b;H
:7,-KlY21,'SHIFT(A;else!b;):SOAK(K);:
sprintf(phrase,w,u); cmov2(x,y); cnarstr(phrame)
) aa;0]bb[0]aa1].bb:1]aa[2]*bb21)
fscrt(DCT(aa,aa))

7rnd, rndr, cute, thick, win, fly, binoc, rftsq, gap, brt,
hilhthfdthta0,tal,dta,:dta,fdta.

u:[4; :4: a'. °'4;

alfa,beta,IsTa,artn,pwr,m4,:s,nose, mysiz,focal,speed,far
sflar pnraserC!,%,:

vq8, :?:, cibe TAin ,

onearz(.1:

(1 .

249 , (it)

dePaultsc):in: ii,:j; !. in tne key of Z
it surface patch

alfa 2; beta 1: lima').; gap
th0 90 : thl 269: cdth19; fdth. 6;
ta0 = 90 tal 270; cdta=18; fdta 6;

dta :ta; dth = roltn;
it flags

wintt2; msg=1; thick-4; binoc0;
flying t

maus.:1; spee-.O4: fly-0: mysiz-.02, ftcal-2.,
/. rendering .

grnd l; trt 25: arb .2; pwr= 16.; nose. 06;
reset the affine matrix .!

a- p1 Inc tbject int: the background
aff;2::::. -4.2;

/* r---'f=- ant deptnoueing parameters ./
:near= tfar = 0x7''."'

CeFa...lts') if ytu want anther set of them .!

argmen's,arct,argv) inn arc: char ..argv; /* Pat Hanzahan, 1999 .!

;.hile--argoH --arg-.... :::;argv0H):--'-') switch argv:0::1:)

ta:e "w': win - attilargv; argv--;argo--;break;
case '7': grnd attilargv:1:); a:;:--; a.,.. ;break;
case 'z'; alfa = atti(argv:::); /* Moebius band a-2,b=1 .,

zeta - attar-.Z :); ,.. r-,"ord torus 2 2 .!

argv -- 2: arg: -. 2;break; /. Knotbox 2 3 .!

1.:a;l: = attfargv:::); /* light source direction "!
l. 0. 1. for headlight .!

- attfiargv:2:); /. 1. 2. 3. Is default ./

arzy -- 3:ar.7c -- 7:treak;
:fmmandline art, ad '''-'-- -imd: the syntax

zaint,Imn,ttg.tat;f1:at 1:/z; int dtg,cat,(int fr,gg,rb; float szet;
7: -CC;; Hartman, 1991 .!

:f) 64;

tc
' M.,4X)Imz,ambH.

spe:mm:N25±,crtet - z.r - '.'n ;); .'t Ray :daszak,

rr MAX(Imrwrr, stet.
gg MAX).-.3;;, spec::
tt m.AX;Imz.cc, spec);

s,rfvv,tn,ta; flzat vv:.?.; Int tn,ta:Ifloat xx,yy,tz,..,al;
C,Ilma; - SC.ima).2ta); limatonit homotcpy ti

aa " 2.:alfa.tn).2.(ta)tli; Sudanese Moebius Band *,

S,alfattn).Cta).11; r. Sue Goodman & tan Asimov, ca

Ctetatth)*Staltli; Larry Siebenmann, :992
- S(tetawth).Sta).11; 0 Blaine Lawson, 1970 "./

a: - 7071.(ax-ww); nearly polar projection ",

w. =
vv:C; = xl.'/(10+9...);
v:1:

dra.s.;rf()!int CC, ta, dcg; float Vv'], nn:3, 1mb;
ftr(tn,tn0; th < hl.;

tgztmeshl:
dog = 255'Yth-thD)/thl-th0); opack(paIntL9,dcg, 0));
surf(vo,tn,taC); v3.f.vo); !* first vertex
surflaa,th-tdth-gap,taC): v3fiaa): '" first rung ./

ftr(ta ta0.dta; Ca (. Cal: to dta)

surf;vv,th,ta): nzrmal on vc as vv

nn[2 :-(aa:::-vv:::).'vo12)-vv;21)-(aa121-vv:2))*(v.(1:-vv:1;;;
tn[1]'(aa:2:-vv)*(vo:01-qv(0))-(aa0)-vv[01).(v
nn:2:.;aa:0-vv(0]).(vo::1-vv[1))-(aa:11-vv(11).!v 0:-v[Z):
1mb 30T1u,nnliNRM(nn); if(lmb<0.)1mt - -1mb;
,.!packi painYlmt, dog,256"fna-ta0)/(tal-ta0)));

1)-1 gap,ta); '.'3f as)

BEST COPY AVAILABLE

tt

4 . 'j 0

2 5 0

endtmesh:):

trawnocp(ta,dt1int ta,tt int tn; fldat vv:2:;
cpac(l:x44ffff)7
bgntmesh();

fcr(th=tn3;th<thl-ttn; th dth),
surfivv,th,ta I;v3f(vv);surftvv,th,ta,-dt);v2f(vv;;

endtmesh():

trawcude Int Li: .. Steve Kcmm.rusch, :984
1P5t,range;1'7.:,1:0,:0,252,255,255znpar,,:3r).
:inewitth'tnickH deptn-7 c:1,;
tgnline();

endline.):
.-zeptncue(3,:

t"ws7-ars', 1n7- f:oat. /* Glp-- Cnappell, 191
pushmatrixil; pushmatrixt). 2 copies of the prc:ector
lcaamatrix(aff); getmatrixtmp':

/*pure ra
p..apmatri:/.11; muitmetrixt:rp`:
srandcm;1,: the stars Pcn't change, hence the 1 ./
cdnpcLntj: cpac<I:x'

vv:';: * rannm()/ifloat).40202CC:-1.:. v.2.t;v71:
endpoint;,:
popmatri.C); /- tne way it was before '/

messages;; ! /. text :ntz,rmaticn as heads-up display *,

if;'hinDt), c.;racn). ccack.lx3888);
dpack,;:tt'2"""'

pe Infa; (Cloarse (F 7.7,0 ('.;),ap, Id ",gap;
'B;inoc >.> 'o (Q)..lpe (":S(%;) ", fly);

.:CA by George Fr.Ancis, Illinois, 199Z",win):
-.0 key inverts tne action, i,suaily.",win);

freouent1y kevs
.35,"(M)a;..s 54g",maus);

t.2g",far;:
LAFEli-.9, .'7E,"pun.. near clipper (i)r %.2;", myslc.fc::a1).

cal !acts: %.2g",focai) :
s(:)ze 1.2g",mysizi;

;:,"(S)peet %g",speed);
AL(-.9, :77.,"(L)imacon %;",:ima);

J. rarely used Pcntrol keys ./
LABEL(-.2, .::,"(fl)amhient ,sg",arlo);
lAE(-.4, %g",pwr);
LABEL(-.2., .%2,"(NIose 5g",n7.se):

ft>Z %d",th:;
LABEL'.25, "st",th.1).
LAPEl'.5 , ic",:a0>;

,st",tall;

kevccard() keys ./
TCGGLE(PF:NTSCREENKEY,msg: messages ant cursor vanish
TCGGLECRKEY,rnts) /* surface vanishes
TOGGLE(QKEY,:.:ze) stick cute appears 0/
TOGGLE(SPACZKEY,fly) fly.nq mode */
PRES_SiSKE'f,speed speed -- .CI) J. accelerat
PRESSIZKEY, OeFaults(), deraults()) /* zap changes ./
?PI:SSC:KEY, mysiz i :.1, mysiz 1.1) rescale the world
PRESS(CKEY, focal 1.1 , focal /0. :.1) telephoto ./
rRESSIPKEY, far .* 1.;1 , far 1.2.1) /. bewPre of this */
PRESS(MKEY, taus , maus .21) /. gen,:er, kinder mouse./
PinS_G(HKEY, r'''-. 36> 1. cross your eyPs
)'R>3 :N0, nnse .C1 , nc1,5) parallax adtuste: '

BEST COPY AVAILABLE

()
2514.,%

PRES S(CKE'r, dtn-c:a
, dthwcdtn: dta cdta) /. coarser mesh ./PRIS-SFKEY, dth *M.,W1,--dth);dta*MAX(1,--dta),

dth"fdth;citawfdta)PRESI(L(EY, lima -* :., lima .ow 1.) /. timacons of Pascal homotcpyPRES S(GKEY, gap-0 , gao*K:N;dth,gap.1)) between the ribbons ./PREST(F:KEY, amn - Cl,. am= - .01) /. ambient floorPRES 51FE', car * 1. , own o* 2.) 0, specular ramp ./
PREST(F5K.V.f, thC 'o.:N(*-th0,thl) , th0--, /. source patch ./PRESS(F6)<C. nt * MAX(--thl,thO)
PRESS(F7KSY, ta0 * M:14)--tat, tal) , ta0--)
PRESSiF8K.F.X, tat MAX(--tal,ta0) , cat--)

mainlargc,argv) int ac-c; char ..argv; int te=p;/* Kronecker celta ttr the identity /

Steve Ktrurrbsn's by Gray-code

ie Load bp deFab.:.ts ./
OeFabts,),
use Hanrahan's aro1.1.mentcr
arg'.=ents:aror,arg",;

normaLtre 1:4nt the :ion.' .;
terrpNY,Y1Jx;; FOR,3,3)

/ ten;
deolde on wtntow style

switcr. .1n)
case :,, nreak;
'73Se C. crefr'.5i.ttnY:,54'i,' creax.;
case 2: break;

:pen 7.ne ..d.nbcws
,7.nspen%::SnaiL"I;

ac'..:t:ecbtre: P".3Brrode(): coohfig();
i.setertn /.--ris may cc the derault
zfonc.:r;r7.F 1ESS); /* rotuffer reversed by GPZATE?

s.eep _:ix 4. fro; messing op ycor wrndcws
:

e.:,erna: :top

- dg .1.0S,dx),:x
;etvalbattr,?=SS.::, oy '0.

f:y tranr
r.rdxmaus,'Y'

,rPE.P25HTM000=, ro!.(-1,'r.))
74,FEZS LEFTMC'.:ZE, rtt(:tr.(1,'71')I

P03 M:::IZMOCJCO,
ir

ranslate (0,0, -speed)
, ansiare sPee.d) :m-ltmatrixtaff), getmatrixlaff):

rco,ate light source ./
FOR (t. , , 3) i r) -0 FOP (0, 71 of I 'craw a frame ./
:packl,grnenx """" *0); c:.ear!); st:eari);

if(boson) viewport(?,,640,256,168); /' rignt eye is
:rcss-eyed shifted stereoscope got 2.2.0.92 with prc flyro

window)-mysiz*1.25,mysis.1.25,-mysiz,mysiz,mysic.fccai,far),
drawstars()
translate(-ncse,0,0); multmatrix(aff).
drawhocp(ta(C,-:), drawhoop(ta1,2):
ifirndr)drawsi,rf(), if(cube)drawcobe(),

It(bincc) (
viewport(640,1290,256,768); left eve is rignt
window-mysrc.1.25,mysiz.1.25,-mysiz,mysiz,mysir.fccal,tar),
drawstars();
translate(nose,0,)), multmatrixiaff);
drawhoopSta3,-2), drawhoop(al, 2):
if(rndr)drawsurfil, if(cuce)drawcobe():,

if(mag)mess,ges!);
swapbuffers();
reshanovrewpcs-.,).

Cr,') .11.e loot /* !

252
4: ,Z)

HST COPY AVAILABLE

ii

#include, #define, and variables.

The program is entirely self-contained, up to calling functions in the graphics, device
and mathematical libraries. Next come a series of abbreviations for the compiler which
improve the readability of the source code. The trig function macros, present here merely
for notational convenience, are an occasion for discussing how to optimize real-time
animations. There are still many graphics computers slower than an Iris where consider-
able improvement in real-time performance can be achieved by tabulating the values of
transcendental functions.

Fnr many sound but admittedly controversial reasons, we depart from standard
programming practice in the matter of variable types, and other customs. The extra
precision of "long" and "double" is rarely needed, and the names "int" and "float" are more
mnemonic anyway. This is not, however, the place to defend or promote these departures.
A reader who is offended by this rough but practical style of writing C is welcome toblue
pencil my code as if it were a school-boy's effort.

deFault(), arguments()

Almost all variables which arc or may someday be, interactively manipulated, or which
are, or may be, used by more than one independent subroutine, are global. Their default
values L:e assigned in a subroutine, which itself can be called repeatedly by the user during
execution. There is a second set of defaults which the student can use to customize his own
version of illiSnail.

The RTICA uses an exceedingly simple algorithm for reading arguments from the
command line. A one letter flag announces new default value(s) for the desired parameter
set. The student n easily add and subtract cases in the switch block without rebuilding
the subroutine. Many years ago, when I explained to Pat Hanrahan that my students
cannot spend much effort on learning input/output syntax in C, he designed this routine
for them.

paint()

The surfaces the RTI CA generates are all painted and lighted. That means two things.
The color of a vertex is a geometrical attribute, for example a function of the surface
parameters. The corresponding values of red, green and blue are attenuated proportional
to the Lambert lighting model (Francis, 1987, pp. 61-64). This needs only the computation
of the cosine between the normal direction and the direction of the light source. At the dim
end, we clamp this attenuation at whatcorresponds to an "ambient" leveL Atthe bright en d,

we ramp all three values steeply to purewhite to give the illusion of a specular region. Later,
at the cost of one 3x3 matrix multiplication per frame, we move the light source so that the
specular high-light appears to be stationary as a surface rotates about some axis. This
simplification of the standard Phong lighting model evolved from one which Ray Idaszak
developed for the Etruscan Venus Project (Francis, 1987, Appendix). It is easy to explain
and to apply, and it works quite well, especially for one-sided surfaces. Its merits and
demerits are discussed elsewhere (Francis, 1991; Idaszak, 1988).

253

Chris Hartman mixed the present color palette in rich pastels suitable for videotaping.
The meaning of the colors painted on the surface is quickly discovered once the user
manipulates illiSnail to draw a fine-grained rectangular patch (see Exercise 1.1). In this
subroutine the "dog" and "cat" chase each other through a color gamut as they map the
surface parameter values into a mixture of red, green, and blue.

surf(vv,th,ta)

This function returns the position of the mapping.
v = f (0, t)

For another surface, the programmer need only change this function, and adjust the
default parameter values. This code segment becomes less of a mystery once it is
transformed into standard mathematical notation as follows.

We first map a it x it sized rectangle to 4-space, where it occupies a + etch on one of the
real algebraic, geodesically ruled, minimal, surfaces immersed in the 3-sphere, as described
by Lawson (1970).

rcos(a0) 0

y sin(o.0) 0
cos T + sin

0 cos(130)

[w.1 L 0 j Lsin(00)]

We rotate the 3-sphere in the xw-plane,

X - W

x+ w

and finally project this to 3-space from a point ju. outside the 3-sphere to avoid accidental
zero-division.

7x

10+9w
7v

10+9w
7z

. 10 9w_

t ft

254

Multiplying [x,y,z,w] by the factor (cos ()-sin (X)cos(1)) before projection, has the effect of
moving the semicircular rwires, for X = 0 to 90', through the Liznacons of Pascal, to full
circles of half the diameter and all passing through the origin.

drawsurf(), drawhoop()

The surface itself is drawn as a succession of ribbons with a greater or smaller gap
between them. Each ribbon, parametrized by r uses the triangular mesh function of the
Iris graphics library. The gap is controlled by the G-key, the stepsize of 0 and ris controlled
by the F-key and the C-key, which switch between a fine and a coarse mesh. The shifted
F-key makes the mesh finer, the shifted C-key makes it coarser. The R-key toggles the
rendered surface on and off. It is intended to switch to the wire-frame, a feature students
are invited to install as an exercise. The yellow 0-ribbon, generated by the drawhoopO
routine, is neither painted nor lighted to really illustrate the tmesh0 syntax. The RGB-color
primitive cpack(Oxbbeedd) employs a hexadecimal encryption of the 3 color values. In this
example, it yields bb=11*16+11=187 blue, ee=238 green, and dd=221 red, in that order.

drawcubeO, drawstarsO

The "unit" cube is in this RTICA for reference (its inside radius is 1) and to train the
user in cross-eyed binocular viewing of the stereo images. The parameters of the binoculars
can be interactively adjusted, and it is easier to use the familiar line-drawn cube than the
unfamiliar surfaces to check the effect of such changes.

The cube itself is drawn as one continuous polygon following a vertex list. Recall that
the hypercube is a significant actor in Math 198. Steve Kommrush, a student in my very
first computer based edition of the course, left us with a beautifully simple algorithm for
drawing the hypercube. As an elementary exercise in modifying illiSnail, the student is
invited to turn the 3-cube into a 4-cube which can be rotated in all 6 planes, and thus
implement Tom Banchoffs (1977) classic visualization of the hypercube.

Originally Glenn Chappell's stars were an amusing experiment, but their presence
really helps keep one's sense of position while navigating the labyrinthine interior of the
surfaces.

messages(), keyboard()

The lit subroutine displays messages on the screen, for example the current value of
parameters, and which keys to press to change them. The key-presses are interpreted by
the next subroutine in one of three styles. Togglers alternate between two states. Cyclers
are more sophisticated versions of this and operate like the buttons on a digital wristwatch.
As students run out of keys to rogram, cyclers become popular despite their confusing
logic. Since the keyboard is meant to be read between each frame, pressing a key can be
interpreted incrementally as an "accelerator." The shifted key reverses the direction of
change in the parameter. In some cases the changes are naturally big steps and one wants
to force the user to think between presses. For this purpose we "soak" the key, so that it must
be let up to take effect.

There are, of course, many other ways of controlling an RTICA; pull-down menus with
sliders and buttons are the most popular. I invite all of my students to compare the effort
and reward of a heads-up display with two handed pilotry favored by flight-simulators to

255

the alternative of controlling everything with the mouse and having verbose menus
interrupt the animation. Soon most agree that ten-fingered users quickly learn do many
things automatically and together, without a need for distracting writing in the field of
view. The messages, and even the mouse cursor, can be turned off with the function key
marked "Print Screen." I often joke with ardent defenders of pull-down menus and slider-
bars that I would not care to be a passenger in a commercial jet flown by a pilot clicking a
mouse to select control values from a pull-down menu.

main(argc, orgy)

This brings us to the main block of theprogram which consists of a setup sequence and
an eternal loop from which one can escape with the escape key. Students are initially
discouraged from changing this part of the program because it contains the hardware
specific calls in the correct order. However, an understanding of its operation in general
terms helps one to perform the experiments and to interpret the sometimes baffling
outcomes.

In the setup, the identity matrix is built with a Kronecker delta defined in terms of the
ternary operator of C. This prepares the student for its use in Steve Kommru sh's very clever
construction of the unit cube. Next, the default values are assigned to the parameters, and
perhaps modified by Hanrahan's routine. For example, a new light source, perhaps a
headlight for the flier, can be given on the command line. Its unit direction is calculated by
the program. The student might build in several lights, or a local light source as an exercise.

The current program is simplified to work properly only with a full Iris screen of size
1280x1024. Indeed, it must be suitably adjusted to workon the small Indigo screen. The
command line choice of three window styles is a start in this adjustment. On the other hand,
if a smaller window is needed without recompiling, execute this Unix line:

iris% illiSnail--w 0

Now we are in the loop. The mouse-syntax in this RTICA is an adaptation of that
invented by Glenn Chappell in his mush more sophisticated geometrical viewingprogram,
illiFly. The intention there as here is to give the illusion of piloting a small space capsule
in and around a mysterious topological object in emptyspace. The capsule can move forward
and backward, and orbit sideways around the object. The porthole can change its focal
length for wide angle or narrow angle viewing, and the entire world can change its apparent
size relative to the capsule. All this is actually a plausible rationalization of the effects one
can achieve using the Iris graphics library primitive for perspective projection.

At the heart of every RTICA is some way of coupling the motion of the mouse with
motion in a subgroup of geometric transformation of the world coordinates. The one used
here has evolved through many years of student and instructor experimentation, and is one
of several we encourage new students to improve upon. Once all the function specific to the
Iris graphics library are translated into standard multilinear algebra, the present version
can be shown to be both obvious and nearly optimal However, we cannot do that here. A
definitive exposition of these matters is in preparation (Francis, Chappell, & Hartman, 1994).

In broad terms then, a displacement of the mouse from the center of the screen (marked
by a gray bullseye) is translated into a small modification of an affine transformation of 3-
space. Recall that the Iris ge ,metry pipeline operates as if the homogeneous coordinates of
each vertex are multiplied by a succession of 4x4 matrices. At any given moment, this

256

4 04;

succession may be associated into a product of just two matrices. The first represents a
member of the 3-dimensional affme group, which is a semi-direct product of GL(3,R) and
R3. (For practical purposes, think of the Euclidean group of rotations and translations.)

The second matrix represents a projective transformation which expresses linear
perspective. The Iris graphics library takes a resolutely pre-Copernican view, placing the
eye at the origin of the world coordinate system, and looking "backwards" into the negative
z-direction. A rectangular window is placed a positive distance from the eye, and everything
visible is clipped to lie in the frustum of a cone between the projection plane and a far
clipping plane. There are two keys in illiSnail which control the projection matrix. The 0
key changes the focal length of the view. You may think of a zoom lens. Increasing the focal

parameter has a telephoto effect; decreasingsimulates a wide angle lens. The latter is useful
for viewing the inside of the tunnels formed by the surfaces.

In order to fly through these tunnels one has to eliminate the effect of the frontal
clipping plane. The I-key does this without changing the linear perspective or the area
occupied by the object on the screen. On the other hand, pressing the 0-key and the I-key
together, changes only the scale of the viewing window, without changing how near to the

eye or the object the clipping plane is located. As you fly closer to an object, it ispossible with

these controls to slice frontal windows into the surface for looking in, or shrinking your
apparent size so as to fly around inside.

The two states of the rotor, toggled by the space-barand echoed on the message board,

are called "flying" and "orbiting." In the former state, the axis of rotation is through the
observer. Thus the space pod moves to where the mouse cursor is pointing. In the latter,
it passes through the object and it appears to turn in the direction of the mouse movement

as is customary for trackball rotors (Francis & Kauffman, 1994; Hanson, 1992). Press the
middle mouse button to move forward at the speed adjusted by the S-key. Shift-mouse
reverses the direction, while shift -S decreases the velocity. The sensitivity of the mouse can

be changed with the M-key.
Binocular vision is induced, approximately, by shifting the entire scene to one side and

the other before projection. For cross-eyed viewing, toggle the B-key: The right image is sent

to the left viewport and vice versa. The "nose" parameter, on N-key, adjusts the binocular
parallax, so that a negative value produces stereopairs for parallel viewing. Stereopairs
holp the user to discriminate certain surface features more accurately, and to discover
programming errors during code modifications. We do not recommend crossing your eyes

for any length of time.

Exercise 1.1

Here are 3 easy experiments to perform on the 3 surfaces in illiSnail. The F5F8 keys
change the range of the two surface parameters. Press the shift-key and the F7, F8 pair
simultaneously to retract the Mobius band to its more familiar position of a ribbon with h alf-

a-twist in it. Note how pressing the F and C keys switches from a fine to a coarse grained
triangulation of the surface. The shifted F-key refines the triangulation, the shifted C-key

coarsens it. Be aware that key presses are not buffered in a queue. All keys arepolled after

each frame. So if a frame takes a while, the key action is slow. In this way, the visible effect

of an action is the confirmation that a key has been pressed, and no inexplicable sequence
of queued up actions can happen when no keys are pressed. Retracting the other surface
parameter (shift F5 F6) yields a rectangular patch which is good for studying the color

scheme.

257 t)

Exercise 1.2

Now press all four keys, F5-8,torestore the Mobius band and stretch it out so that itsborder becomes a plane circle and the "diameters" are again semicircles. If you are in ahurry, the Z-key zaps all changes and restores the original settings. Hold the L-key downand watch these semicircles close to full circles. The border of the Mtibius band shrinks toa point, producing the cross-cap model of the real projective plane (Banchoff, 1978; Francis,1987, Ch. 5). The G-key controls the width of a gap between successive meridional stripsthat make up the surface. Shift-G zeros the gap. Note how these ribbons are Gouraudshaded in one direction, butnot the other. This improves binocular convergence as well assimplifying the code.

Exercise 1.3

For the third experiment provide the flier with a "headlight" by executing

iris% illiSnaii-u 0.0 0.0 3.0

from the Unix command line. Next, rotate the snail, switch to flying mode (space-bar). Tryto. y through the twisting tunnelwithout sliding through the walls.Once inside the snailshell, you may wish to slow-down (S-key) and widen your field of view (0-key). Release the
mouse button to stand still and look around.

Exercise 2

Now switch surfaces.

iris% illiSnail-p 2 2-u 1. 2. 10.

This yields a (nearly) stereographic projection of the Clifford Torus from the round 3-sphere to flat 3-space. Repeating the first experiment demonstrates how the torus may beregarded as a closed, two-sided ribbonwith one twist in it, stretched out until the edges cometogether along a circle. Flying through both holes of a torus is predictably easy. Exploringthe limaconic homotopy meaningfully here is more of a challenge. Note that Hanrahan'ssubroutine can changemore than one case of default parameters. We installed "headlights"too.

Exercise 3

iris% illiSnail-p 2 3

Thermal surface is the most difficult to understand. The first experiment applied to thissurface shows how a Mobius band spanning a (yellow) trefoil knot has3 half twists. Bendingthe knot so as to form a triple-circle (think of the knots that gardenhoses tend to form) brings3 sheets of the surface together along the same curve. This 2-dimensional cell complex isa smooth realization of what Ulrich Brehm (1991) calls a knotbox. Ifyou succeed in flyingthrough this object, your trajectory will be a trefoil knot. A reader initiated into thetopological mysteries of knot complements will recognize this complex as a standard spine
of the complement of the trefoil knot in the 3-sphere.

258

Bonus Exercise

A rewarding programming exercise would be to enable the user to control the values
of the a and13 parameters interactively, say on A and B keys. This way one can observe the
twisting of the band and the transitions between these three surfaces (and many other
surfaces) more conveniently.

The software discussed here and documentation for running on your own Silicon
Graphics computer is available through anonymous ftp from the author
(gfrancisgmath.uiuc.edu) by executing

iris% ftp 128.174.111.12
and logging in as anonymous.

References

Asimov, D. & Lerner, D. (1984). The Sudanese Mobius Band, 3 min. videotape in
SIGGRAPH Video Review, 17.

Banchoff, T.F. (1990). Beyond the third dimension: Geometry, computer graphics, and
higher dimensions. New York: W. H. Freeman.

Banchoff, T. F. (1977). The Hypercube: Projections and slicing [9.5 min narrated, color film].
Chicago: International Film Bureau.

Banchoff, T.F. (1978). The Veronese surface [12min. color film]. Providence, RI: Mathemat-
ics Department, Brown University.

Barnsley, M.F. (1988). Fractals everywhere. New York: Academic Press.
Brehm, U. (1991). Videotaped interview at the Technische University Berlin.
Brisson, D.W. (Ed.)(1978). Hypergraphics, visualizing complex relationships in art, sci-

ence, and technology. AAAS Selected Spriposium 24. Boulder, CO: Westview Press.
Conway, J., Doyle, P., & Thurston, W. (1991). Geometry and the imagination, Mathematics

199 at Princeton. Research Report GCG27. The Geometry Center, 1300 So. 2nd St.,
Minneapolis, MN 55454.

Dewdney, A.K (1988). The armchair universe. New York: W. H. Freeman.
Francis, G.K. (1987). A topological picturebook. New York: Springer-Verlag.
Francis, G.K (1990). The snailhunt. To appear in A. Bowyer (Ed.), Mathematics of surfaces

IV; Conf. pros. of the Inst. Math. Applic., Bath, England.
Francis, G.K. (1991). The Etruscan Venus. In P. Concus, R. Finn, & D. Hoffman (Eds.),

Geometric analysis and computer graphics. New York: Springer-Verlag.
Francis, G.K (1992) Visual mathematics, Part I: Experimental arithmetic; Part II:

Hypergraphics; Part III: Geometrical graphics, 1991. Class notes and lab manuals. :
UpClose Printing Copies, Champaign IL.

Francis, G.K, & Kauffman, L.H. (1994). Air on the Dirac strings. In W. Ahikoff, J Birman,
& K Kuiken (Eds.), The mathematical legacy of Wilhelm Magnus. Contemn. Math
Series, Amer. Math. Soc., Providence.

Francis, G.K., Chappell, G., & Hartman, C. (1994). A Post-Eucldean walkabout. In the
CAVE virtual reality theater (VROOM), at ACM SIGGRAPH 94, Orlando. Mosaiac
documentation available on Internet from the National Center for Supercomputing
Applications, U. Illinois.

259 9 J

Gunn, C., et al. (1990). Undergraduate research experiences, summer 1990. Research
Report GCG19, The Geometry Supercomputing Project, U. Minnesota, Minneapolis.

Hanson, A (1992). The rolling ball: Applications ofa method for controlling three degrees
of freedom using two-dimensional input devices. In D. Kirk (Ed.), Graphics gems HI.
New York: Academic Press.

Hanson, A, Munzner,T., & Francis, G. (1994). Interactive methods for visualizable
Geometry. In special (July) issue of IEEE Computer, edited by Arie Kaufman.

Hirsch, M.W., & Smale, S. (1974). Differential equations, dynamical systems, and linear
algebra. New York: Academic Press.

Idaszak, R.L. (1988). A method for shading 3D single-sided surfaces. IRIS Universe, pp. 9-
11.

Illyes, R.F. (1988). ISYSForth. Champaign, IL: Illyes Systems.
Lawson, H.B., Jr.(1979). Complete minimal surfaces in S3. Ann. Math., 92(2), 333-374.
Marden, A (1991). Director. Undergraduate research experiences, summer 1991; Research

Report GCG33, The Geometry Center, 1300 South 2nd Street, Minneapolis, MN 55454.
Sandvig, C. (1990). GS.AMPER.1VEW: A 65816 ML graphics package for the Apple figs.

Technical Report, UIMATH.APPLE Lab, Mathematics Department, University of
Illinois, 1990.

Siebenmann, L. (1982). Le Gobelet de Mobius. [privately circulated script] Brouillon,
France.

260

Chapter 14

A Syllabus For Scientific Visualization

ALF3C PANG

What is Scientific Visualization?

Webster defines visualization as the process of seeing or forming a mental image. The
panel report (McCormick, DeFanti & Brown 1987) to NSF regarding the initiative on
Visualization in Scientific Computing provides a qualifier and defines scientific visualiza-
tion as "...a method of computing. It transforms the symbolic into the geometric, enabling
researchers to observe their simulations and computations. Visualization offers a method
for seeing the unseen...visualization is a tool both for interpreting image data fed into a
computer, and for generating images from complex multi-dimensional data sets. It
studies those mechanisms in humans and computers which allow them in concert to
perceive, use and communicate visual information." As these definitions imply, there is
a strong visual component involved. Hopefully, with the insight gained by being able to see,
one can then form or understand ideas or abstracions which may lead to new scientific
discoveries. Since the goal is to facilitate understanding, why limit the process to the visual
channel? In fact, a more general definition, which is consistent with the original spirit
and intent of visualization, it -v include sonification or audiofication of data that maps data
to sound parameters in or to complement the visual inputs to the human brain. In
addition, one may also take advantage of tactile feedback to enhance understanding
through interaction and manipulation of data models with virtual reality interfaces. We
shall adopt this broader definition of visualization to include different tools and feedback

chanisms that help us understand the subject under investigation

9
261 4. t)

Scope of Scientific Visualization

A thorough coverage of scientific visualization includes a complete treatment of each
step in the visualization pipeline. This pipeline includes data gathering, processing,
display, analysis and interpretation. Each of these steps are operating and transforming
data into different forms and representations. The tools used in these operations encompass
signal processing, computer graphics, image processing, graphical user interfaces, and
multi-variate analysis to name a few. In addition, the tools used at both extremes of the
pipeline tend to be domain dependent and often require intimate knowledge of the nature
of the data sources. Obviously, such a coverage is beyond the scope of a typical school term.
Thus, this chapter will concentrate on the standard tools that are commonly found in
visualization systems. Do remember that visualization has a synergistic relationship with
a rich set of fields including those from the different applications of scientific visualization.
Therefore, keep an eye out for those visualization tools that extend beyond its originally
intended application.

Rationale of Syllabus

The course material outlined below is organized into a set of core topics and a set of
related topics. The core topics are intended to provide depth and basic preparatory skills
to carry out visualization tasks. On the other hand, because visualization is a dynamic and
growing field, the core topics are complemented with related topical breadth subjects to
cover application areas and highlight the latest developments in the field. Together, these
topics should provide the students with the basics and a well rounded perspective of
visualization. Below is an outline of the proposed syllabus.

Core Topics:
Data Characteristics and Types
Data Transformations

Sampling
Quantization
Fourier Transform
Noise and Filtering
Registration
Interpolation
Image Enhancement
Feature Extraction
Dimensionality Reduction
Mapping

Data Rendering
Surface Visualization
Volume Visualization
Flow Visualization

Breadth Topics:
Computational Issues in Steering
Visualization Packages
Sonification and Other Input Channels
Applications

262

The format of presentation for these topics will include abrief description with some
examples where appropriate.

Core Topics

In operational terms, data goes through different stages ofvisualization where it is
gathered, transformed, presented and digested. The topics in this section examine the
relevant steps and issues involved. Figure 1 shows a simplified illustration of the
visualization pipeline.

Acquisizion Trans Formation Rendering is

7. '.:.:7

i .:'

..? 1' :. : a

a' .1..e'p

.

1--::

i

..

...

1' ':n

7,-----
":,...H,--,1

..'1'

:

::. a 7, rs: 1 1 ng --1'7-.4"-.
0'

^ -
::;',.;..kir:.: :..:..!:-. -.. -"d"

::: '..: r :: a C e a '.' , 1'

...'... 3 .1:i : : Za '':. 2.,:.:1

in :7:I:. : .:..

.. '.:.:17 ,":.

rC)C)1:1
Agli

1r17'.
:,.

. . .--

Figure 1. The Visualization Pipeline

Data Characteristics and Types

Data have different properties and characteristics and may be classified using these
differences. For example, data usually represent some physical quantity which can be
either a scalar or vector quantity. Scalar values may represent such properties as
temperature and pressure. On the other hand, vectorvalues may represent wind velocities.
Frequently, physically related multivariate data may also be organized as a data vector.
Aside from its physical interpretation, data can also be distinguished from its spatial,
frequency and spectral properties. Thus, the location where data are collected, the time
interval between data collection and the spectral property of the collected data all serve to
characterize the data set. Sometimes the original data representation maynot be sufficient

to analyze the data. In such instances, one of the standard techniques in analysis is to exploit
the different representations of the same data set to highlight the interesting aspects of
the data set that may not be visible in other representations.

In order to properly render and present data, one must first understand the circum-
stances in which the data were obtained and the pre-processing that were performed. It is
important, for example, to account for the calibration of sensors; noise and transmission
losses; abasing from improper sampling procedures; quantization errors while converting
signals from analog to digital; and interpolation errors during reconstruction. These data
characteristics can be better understood and isolated if weview them as incremental errors
introduced along the visualization pipeline. At each stage of the pipeline, the output from
the preceding stage becomes the input for the next stage. In this manner, we can identify
four general types of data (Haber & McNabb, 1990):

263 c. -t)j LiEST COPY AVAILABLE

1. Raw data.These are data that are either measured directly with sensors, obtained
directly from simulations, or from first hand observations. Examples include satellite
images, numerical output from a computational fluid dynamics (CFD) simulation or
positions of the heavenly bodies.

2. Derived data. These are raw data that have undergone some transformation. Transfor-
mations may be as simple as direct physical relationship such as deriving electric
potential from measured current and known resistance values, or they may be more
involved such as inferring distance from red shift. The section on Data Transformations
will discuss other forms of transformations that produce derived data sets.

3. Graphical data. Both raw data and derived data may then be converted to graphical
data. Graphical data are the geometric representations and other visual cues that
correspond to the raw and derived data. Thesemay include such mappings as data value
to color, opacity, elevation, graphical icons or glyphs and other geometrical, animation
and perhaps sound parameters.

4. Analysis data. Hopefully, the visual representation of the data will help the investigator
in the analysis task. These analyses may be an end product of visualization or it may
also provide a feedback loop in the visualization process for refining data collection
strategies and improving simulation model and parameters. As an example, imagine
troubleshooting your car. Seeing smoke coming out from under the hood may lead you
to conclude that your car has overheated. It may also warn you that your engine is not
properly oiled or that it may have a leak elsewhere leading you to check other parts of
the car as well.

Each step in the visualization process above in solves some data corruption or
transformation which must be kept track of. These transformations will be described in the
next section.

Data Transformations

The visualization pipeline can be viewed as a series of modules that operate on various
data sets. These modules convert data fromone type to another and from one representation
to another in order to highlight interesting features. As early as the data gathering stage,
data is already being transformed during sampling and noise reduction operations. The
data is continuously transformed all the way to the rendering stage where different view
transformations provide better perspective of the same data set. This section describes some
of the important data transformation steps. Note that while most of the following
transformations are presented in an image processing context, the techniques can be
extended to non-spatial data sets as well. Most of the references to the following
transformations can be found in image processing or signal processing text books such as
Pratt (1991) and Rosenfeld and Kak (1982).

Sampling

A fundamental understanding when dealing with data sets concerns how the data was
sampled. Improper sampling can distort the data set and may lead to inaccurate conclu-
sions. For example, the observation that it never rained on July 4 during the last 10 years
may lead one to believe that it will not rain on the next. July 4. This conclusion is not entirely

264

correct since climate is seasonal while weather may change on the order of a few hours or
days and not on the order of years. Therefore, one should look at more recent trends instead.
That is, one should watch out for the daily weather variance rather than the annual cycles.
The idea that one needs to sample frequently enough to capture the rapidly changing events
of the phenomena of interest was formalized by Nyquist. It is known as the sampling theory
which states that "the sampling rate must be at least twice the highest frequency of interest
in order to digitally represent the signal properly".

The consequence of sampling below the proper (Nyquist) rate is an effect known as
aliasing. Consider the setup shown in Figure 2, where the sampler can sample at different
rates and the wave analyzer outputs the perceived signal.

ZS arr.::..1,?. anal;zer
LS. 3na....

Figure 2. Data sampling

Assume that the sampler is set to sample the input signal at 60 times per second. The
incoming signal may be either be simple or a composite of several signals. The perceived
signal coming out of the wave analyzer will depend on whether the highest frequency
of the input signal is above, below or at 30 times per second. For example, if the highest
frequency of the input signal is 20 cycles per second, the entire signal can be identified
properly since it is being sampled at over 40 cps. However, if the input is at 40 cps, the
perceived signal will be 60-40 = 20 cps due to aliasing effects. Likewise, the perceived signal
of a 60 cps input is 60.60 = 0 cps.

Aliasing effects are also manifested in the spatial domain. That is, instead of temporal
&insing, we now have spatial aliasing. For example, a scene can be digitized and
represented in a 2D picture with an image resolution of NxM data points. Alternatively,
the same scene can be represented with less samples resulting in a lower resolution image
of nxm (where n<N and m<M). If the scene contains high frequency components such as
edges and lines, those components will be undersampled and show up in the picture as
aliasing artifacts usually called jaggies in computer graphics terminology.

Quantization

When an analog signal is converted to a finite precision digital representation,
quantization errors are introduced. Similar errors are also introduced when a high
precision signal is to be represented by a lower precision signaL For example, when
continuous tone color or those represented with 24 bits are to be scaled down to an 8 bit
representation, then some quantization errors are ivitroduced. The number of bits to
represent a color is known as the color resolution in g aphics parlance. Aside from the color
resolution, other factors are also involved in quantization errors. For example, perceived
quantization errors can be minimized by optimally allocating discrete color values to
represent the dominant color schemes of a scene.

13ES I GUCY AVAILABLE Al
265

It is also interesting to note that for human perception, tradeoffs can be made between
sampling errors and quantization errors. Using the example of digital picture representa-
tions and using the same amount of information (expressed in terms of the total number
of bits to represent the scene), one can use different combinations of image resolution or
color resolution. For example, high frequency (busy) images are better off using high image
resolution and low color resolution. On the other hand, low frequency (slowly changing)
images are better off using low image resolution together with high color resolution.

Fourier Transform

Originally, the idea of this transform was to represent a complicated function with a
linear combination of simpler functions. Today, Fourier transform is used in a broad range
of fields from optics to numerical analysis and to medical imaging. In the realm of image
processing, the 2D discrete Fourier transform, described below, offers another perspective
of the picture content by transforming information in the spatial domain to an equivalent
representation in the frequency domain.

11-1N-1

1F(u,v)- ZEf(rn,n)en[- j24m2-+n---
MN Mtsi0

where F(u,v) is the Fourier transformed image of an MxN input image f(m,n).
Being able to analyze the image or signal in the frequency domain may provide another

view of the same data content in a new light. For example, a 2D discrete Fourier transform
of an image provides information about the magnitude and orientation of different
frequency components in the image. The information in the frequency domain can often be
exploited in various filtering schemes that operate in the frequency domain. Examples
include some noise removal and image enhancement techniques. The success of the
filtering schemes rely on the fact that the Fourier transform is reversible. That is, one can
apply an inverse Fourier transform to reconstruct the original image or signal One of the
many practical applications of the Fourier transform relies on the projection slice theorem
which claims that projecting an image onto a line at a certain orientation and then taking
the Fourier t ransform of the projection is the same as taking the Fourier transform of the
original image and then taking the values from the transformed image along a line (slice)
with the same projection line orientation. If one can obtain projections at various
orientations, then the information in the Fourier transformed space can be filled in. Using
the inverse Fourier transform, the original image may then be constructed. This fact is
exploited by computerized axial tomography (CAT) scanners. The same idea is also used by
some volume rendering techniques to generate %.ray like images.

Noise and Filtering

Sensors often introduce noise which manifest themselves as high frequency compo-
nents that need to be smoothed out. Different techniques are available for alleviating the
effects of noise depending on whether the noise is independent or dependent on the subject
being measured. Having as much information about the subject, even those of statistical
nature, will aid in the removal of noise from the measurements. For instance, without
knowledge of where noise are located, they can still be smoothed out by spatially averaging
the values with a small sliding window. However, this low pass filtering operation also has

266

the undesirable effect of smoothing out some details in the data. One can do better if one
knows where noise are located Intuitively, the idea is to selectively take out the noise and
replace it with something elseusually some average of neighboring values.

Registration

Just as there are d 'Terent types of data, there are also a multitude of sensors. One of
the tasks in visualization is to fuse these different data into something that is coherent. In
order to perform multi-sensor data fusion, one must first do data registration and try to
account for distortions arising from sensor placements. For example, to obtain a satellite
image of the earth without cloud cover, several images obtained over a period of time, from
one or more satellites must be composited together to form a mosaic image. These images
must be registered properly in order to form a seamless mosaic image. Atypical technique
is to use certain landmarks or fiducial marks to register the rest of the data. The proper
positioning and orientation of composite data sets can then be found by using correlation
techniques which maximizes the match between the composite sets. Note that the same
idea can be applied to non-spatial data such as speech or temporal patterns.

Interpolation

In almost every instance of data collection, data are sampled at discrete spatial locations
and time intervals. If the sampling is frequent enough, the original signal can be
reconstructed from the sampled values. If only a few values in the series of measurements
are needed, those values may be approximated by interpolating neighboring values.
Various degrees of continuity can be achieved by using different interpolation techniques.
For most practical purposes, linear to cubic interpolations are sufficient. When data is being
collected or generated from a spatial grid, intervening values between the grid points can
alsobe obtained in a similar manner. Most interpolation techniques can be readily extended
in dimensionality from curves to surfaces to hypersurfaces. Thus, assuming that data are
sampled properly, then one can use simple linear interpolation or slightly more complicated
spline interpolation to fill in missing data with a high degree of confidence.

Image Enhancement

Because of the limitations or the conditions in which sensors operate, together with
some built in bias in our visual perception system, it may be worthwhile to apply certain
transformations to tine data set in order to enhance it. For example, an out of focus or motion
blurred image may be sharpened to some extent; and details in a poorly lit image may be
enhanced by contrast stretching.

Image sharpening is the counterpart of the smoothing operation. In qualitative terms,
the high frequency components of the spatial frequency signal is emphasized while the low
frequency components are suppressed. In operational terms, the image is convolved with
a template such as the one shown in Figure 3 to emphasize areas of changes in picture
values.

267 2

Figure 3. Image sharpening

That is, the enhanced picture em,n) is obtained by subtracting the blurred (or averaged)
components out of the original picture f(m,n) for each picture element m,n using the
following relationship:

g(in,nf(m,n) - 1/5 if(m+1,n)+1(m-1,n)+f(m,n)+f(m,n+1)+f(m,n-1)1

Contrast stretching is achieved by a more efficient utilization of the available
quantization levels or picture values to represent the information in the image. This task
is also known as histogram modification because it changes the distribution of how the
quantization levels are used. The essential features of the technique is to first obtain the
histogram of the image and then to flatten or equalize the histogram. An intuitive
explanation of how this works is as follows: the histogram of an under-exposed image will
show that dark or low quantization values are used b.uch more than bright or high
quantization values. Histogram modification will spread the large clump of dark values so
that one can now resolve smaller differences in the dark region. Note that the same
technique can be used to minimize quantization errors.

Feature Extraction

Often times, there is a deluge of data so that the sheer volume interferes with the
analysis task. In these cases, it is helpful to simply examine interesting features rather than
the original data set in its entirety. Interesting features v ary from application to application
and may range in sophistication from detecting the presence or absence of the feature to
predicting the occurrence and tracking the location of the feature. Depending on what is
being searched for,different techniques are available for extracting features from the data
set. For example, a typical pattern analysis procedure will include finding con tour lines and
detecting edges or regions in the image. In analyzing electrocardiograms, a combination
of several features such as the frequency and amplitude of a complex wave form may be
significant.

Dimensionality Reduction

Like feature extraction, the techniques used here also reduce the amount of data that
needs to be dealt with. The manner in which this reduction is accomplished is through

268

multivariate analyses where the relationship of various parameters are established. A
popular method for doing this is called projection pursuit expounded by Friedman (1987)
and Crawford and Fall (1990) where high dimensional data sets are successively projected
into lower dimensional space such that one can maximally discriminate between sets of
variables. Similarly, if variables can be related to each other in some linear fashion, then
those variables can be lumped together into a single composite variable.

Mapping

Data can be prepared for rendering by mapping them to geometric primitives and
visual cues. There are several options that are readily apparent. Sequential data from a
single source can be plotted with points connected by piecewise linear segments or a spline
curve fitted through the points. Ratio information can be illustrated using popular business
graphics methods of bars and pie charts. Higher dimensional data can be represented
within a single image by mapping different variables to different cues such as color, line
thickness, line style, shape, and so forth. As an alternative, Chernoff (1973) proposed to use
"smiley" faces or other icons to represent high dimensional data set where mapping
parameters include roundness of face, expression of face, etc. Mainstream visualization
typically makes extensive use of color mapping, for example use of pseudo coloring scheme
to represent different temperature, pressure, excitation levels and valuesof other scalar
variables. Vector data such as wind velocity in weather applications and CFD applications
are usually represented in static images as arrows of different lengths, colors and
directions. Alternatively, they can be animated. Each data point is represented as a small
particle and the path of each particle is traced out over time to indicate the magnitude ailed
direction of flow. Uncertainty in the data, be it data quality or density levels can also be
mapped to different opacity levels resulting in images that contain fuzzy areas. in addition,
to the visual cues, data can also be mapped to sound parameters such as pitch, volume and
different musical instruments. The different mapping possibilities are countless. However,
one must be judicious in selecting the appropriate mapping to avoid confusion.

Data Rendering

The most notable part of visualization is the graphical rendering of the transformed
data. The rendering process itself can also be considered another stage of data transforma-
tion. In th is case, transformation tasks may Involve hidden line or surface elimination, color
mapping, or generating geometrical data from derived data, among other things. The final
output of the data rendering stage are the pictorial representations of the data. A whole
spectrum of techniques is available for rendering. These may range from time critical
applications to refined, post-production quality graphics used in detailed analyses.

269 9
ti / ,)

Figure 4. A spectrum of graphical rendering techniques

The techniques layed out in Figure 4 represent some of the more recent topics in
visualization and are by no means exhaustive. It does illustrate the range of options that
are available at one's disposal. At one end of the spectrum, the graphics tend to be "quick-
and-dirty" and are often used to meet the demands for real-time interactivity. At the other
extreme, the techniques are more expensive but generate more sophisticated and detailed
images. Below is a brief description of some of the more popular techniavcs.

Surface Visualization

Physical world data that need to be visualized are usually located within three
dimensional space. Traditional computer graphics algorithms have looked at the problem
of hidden line and surface removal of 3D scene descriptions. In contrast to these scenes
where surfaces are specified, the 3D data one encounters in visualization problems are
often volumetric in nature. Data values obtain ed from different locations within the volume
can be characterized by the type of grid that is superimposed on the environment
(Wilhelms, 1991). The grid may be regular where each element in the volume isan identical
box, the grid may be rectilinear, a slightly more general grid where the distances along
...ices are arbitrary. Structured but non-orthogonal grids are often found in CFD experi-
ments. These are called curvilinear grids and are often defined by warping a regular grid
in space. Finally, there are the unstructured grids where sample points are distributed in
some arbitrary order in space. Usually, any geometric structure present in the data set are
implicit rather than explicit. For example, a CAT scan is a collection of density values within
a regularly structured grid with no explicit specification of surface boundaries. On the
other hand, oceanic and atmospheric data sets are usually sparse and unstructured.

Just like extracting edges from 2D images, surface information must also be extracted
from the volumetric data. Surface features that are of interest include isosurface locations
and their corresponding surface normals. These tasks are much simpler if the volumetric
data is in a regular grid. Typically, the volumetric data can be treated as either residing in
a small cube of constant value, known as voxels, or residing at corners of the grid cells. In
both cases, some kind of thresholding is first performed to determine data values of interest.
Others are zeroed out. Each interpretation then results in different ways of rendering. The

2l6
270

cells interpretation requires finding the approximate polygon surface representation of the
surface of interest. The voxel interpretation works directly with the volumetric data Let's
look at both approaches a little more closely.

A popular way for converting vol umetric data to polygonal representation is with the
marching cubes (Lorensen & Cline 1987) algorithm. It works by identifying all possible
cases on how the 8 corners of a cell can be filled with the possible surface points. Surfaces
are then identified by interpolating through these corner points. This process is extended
to neighboring cubes until the entire volume is processed. Once the surfaces are identified,
the polygons are then sent to a standard polygon renderer. Since these surfaces were
obtained by thresholding the cells to a sing e value, the resulting surfaces are collectively
called the iso-surface. If more than one iso-surface is desired, then the process is repeated
this time using a different coloring scheme for the extracted surfaces.

Unlike iso-surfaces, voxel based approaches work directly with the volumetric data.
These methods are usually found in the context of medical applications where volumetric
data are from CAT scans. An initial thresholding pass is performed to identify those voxels
that fall within a range of values. Then a second pass is performed to render the identified
voxels. There are two general methods of rendering the volumetric data. One is based on
raycasting and the other based on projection.

Raycasting generates an image by casting a ray from each pixel on tip, display screen
to the scene. The first non -zero voxel that the ray hits is the visiblevoxel and also terminates
that ray. The shading of that particular voxel on the screen is usually determined by
examining the neighboring voxels and approximating a surface normal at that point. There
are also other things to consider: orthographic rays result in a more efficient implementa-
tion than oblique rays; interpolation may be necessary if the ray falls between voxels; other
means of shading such as distance-based and image-based shading can be considered; and
finally, extending raycasting so that secondary rays are generated (raytracing) can provide
reflection and transparency effects.

Instead of shooting rays to the data set during raycasting, projection throws the data
to the projection screen. As data is projected and a determination is made on the location
and size of the projected image, the distance information are also recorded in order to
determine visibility. Note that data can be processed in either back-to-front or front-to-back
order. Shading information is derived in the same ways as those used in raycasting.
Operationally, the difference between the two methods are:

1. Raycasting:
for each pixel

shoot ray to data set,
find intersection and shade.

2. Projection:
for each data point

project onto screen and shade accordingly.

Volume Visualization

Another commonly used technique in visualization is to generate images where the
entire volumetric data set contributes to the final image. The resulting images can

271

potentially show the internal structures instead of just surface information. Note that
unlike surface visualization, there is no feature extraction step. Typically, volume rendered
images tend to be more fuzzy since they employ transparency and opacity mapping in
addition to color and shading mapping. Similar to surface visualization, there are two
ge neral classes ofvolume rendering algorithms: projection based and raycasting based. The
main difference between volume and surface visualization is the use of transparency to
incorporate internal structure information into the final image.

A popular method of volume rendering using the projection method is known as
splatting (Laur & Hanrahan, 1991; Westover, 1990). This method assumes that each data
point represents some density function where the values drop off with distance. An image
is generated by projecting each data point together with some filter associated with the
density function and then integrating with the information in the neighboring projected
space.

With raycasting, or more generally, raytracing technique, several variations exist
depending on how values are accumulated along the ray. The general idea is that as the rays
are traced out into the data set, they penetrate through the volume where color and opacity
information are accumulated. One method (Upson & Keeler, 1988) proposed to examine the
data values as the rays penetrate the boundaries between adjacent cells. Another method
(Levoy, 1988) proposed to examine the data values at equally spaced intervals along the ray.
Both methods have to deal with interpolating values along the ray. Other considerations
include the effect of hierarchical representation of the volume. In addition, one can also
allow the ray to refract in different directions depending on the varying index of refraction
as the ray traverse through the medium. For the sake of efficiency, the raytracing process
is terminated when either the ray does not hit any volume element or the accumulated
opacity value has reached unity. Areas where volume visualization has gained popularity
include medical imaging and computational fluid dynamics. For example, taking advan
tage of the regular cubical structure and fixed light sources, the Heidelberg raytracing
model (Meinzer, 1991) made further simplifications based on the rendering equation
(Kajiya, 1986) and still produced high quality images. Mother example is the volume
rendering method proposed by Krueger (1991). This method is based on transport theory
and offers flexible mapping between extracted features and visual parameters allowing
different perspectives of the same data set.

Flow Visualization

Data sets often contain dynamic information such as velocity information or constantly
changing variables with the introduction of another variabletime. Unlike structures
found in static data sets such as CAT scan images, the salient points in these dynamic data
sets are often found in the changing flow patterns. The most obvious way of showing flow
behavior is with animation. There are several techniques ranging from traditional methods
such as animation loops and color table animation to more sophisticated methods such as
particle systems and ribbons. These will be discussed briefly.

A static image c,..n also provide some sense of flow within a vector field. These images
typically involve the use ofhedgehogs or arrows of varying directions and lengths indicating
the magnitude of the vector. More recently, Ellson (1988) proposed to pack multivariate
information together in the hedgehog display by substituting arrows with icons or glyphs.
However, there are limitations on these techniques when dealing with 3D vector fields. In
particular, the image will look too busy and tend to confuse the viewer. As an alternative,

4 I 0

272

Heiman and Hesse link (1991) suggested that structural and topological information such
as tangent surfaces or surfaces of separation can be derived from critical points such as
saddle points as well as attracting and repelling foci. These curves and surfaces can then
be rendered thereby highlighting features such as curls and twirls often found in CFD data
sets.

A classical example where simple animation loops can highlight the important flow
patterns is by taking a series of satellite cloud images and playing them over and over again
in a closed loop. This technique has gained wide acceptance and is commonly found in TV
weather forecast segments. The same technique can obviously be applied to data from other
application domains. Another cheap method of simulating motion without doing any actual
movement is with color table animation (Van Gelder, 1992). The tricky part is selecting the
right color table entries such that when they are cycled through using the color indices in
the displayed image. an illusion of motion is generated. Another example of displaying
motion is described by (Freeman et al., 1991) with the use of steerable filters to calculate
local phase changes which give rise to the sensation of motion.

Particle systems were originally proposed by Reeves (1983) to model natural phenom-
ena. The basic idea behind particle systems can be viewed in terms of object oriented
programming where each particle in the system is assigned certain properties and each
particle behaves independently according to its own set of rules and possibly some
interaction rules with neighboring particles. For example, fire, fireworks and grass have
been modelled with particle systems by defining an initial area where particles are seeded.
Each particle in this area is then assigned an initial velocity, color, life span, size and other
relevant parameters. Some rules such as gravitational laws from the physical world or some
arbitrary rules for some desired effect, such as decay or birth rules, are then imposed on the
particles. The entire system is then activated and each particle is traced out in space and
integrated over time.

The same idea has been applied to flow visualization, notably in CFD applications. In
this case, tracer particles or smoke dyes can be injected at certain places and time intervals
into the system. Their path and relative age are then tracked by observing changes in
particle position and color. The calculations involved in determining the path trajectory are
usually based on local gradients and the alvection or transport of particles.

The effects of particle systems may be further enhanced by combining some ideas from
behavioral animation to highlight some effects that are normally not visible such as force
fields or vector fields. For example, Wejchert and Haumann (1991) showed how leaves
tumble and swirl around as they are blown by the wind. That is, one does not immediately
see the wind but can infer on wind speed, direction and the presence of vortices.

As a further improvement to particle systems, Hultquist (1990) proposed to use ribbons
to indicate flow. Ribbons are similar to particles but come in pairs. As the particle pairs are
traced out, polygons are used to tile the surface between the two particles. This idea can be
generalized to a rake where particles are introduced at each of the teeth locations. The
resulting set of ribbons is referred to as stream surfaces. One of the important advantage
of this feature is that stream surfaces can fold or twist around thereby highlighting twisting
movements that may be lost in the confusion of particles.

273 4. I i/

Breadth Topics

The topics in the following sections are meant to supplement the materials in the core
topics. Depending on the interest level of the class and time availability, the topics below
can be included in the same academic term. The following is by no means an exhaustive
list of breadth topics and should be updated periodically as new and interesting advances
occur.

Computational Issues in Steering

The materials presented so far have, to a large extent, ignored the computational issues
in most of the algorithms. A closer look at the spectrum of visualization techniques will
reveal that there is a tradeoff between rendering quality and speed. In this section, we will
look at similar tradeoffs in achieving interactive speedsnecessary for steering. Steering or
navigation is a term coined to describe the ability to dynamically modify computations and
their corresponding visual representations during processing. Immediately, one can
identify two requirements: fast numerical solution of the mathematical models and fast
rendering. Luckily, these two requirements can be pursued relatively independently.

The treatment of numerical solutions to mathematical models, typically characterized
by ordinary differential equations (ODE) and partial differential equations (PDE), is a
subject of its own and is beyond the scope of this syllabus. However, it is worthwhile to bring
out some standard integration techniques such as Euler, Runge-Kutta and adaptive step-
size methods from Numerical Recipe (Press et al, 1986) for solving ODE and Finite
Differencing, Method of Lines, Finite Elements andMonte Carlo methods for solvingPDE.
Numerical accuracy and stability of results can be easily demonstrated through some
simple homework where students can vary the integration methods and the integration
time steps. A simple exercise may involve simulating a swinging pendulum or a coupled
pendulum pair and then showing a graphical presentation of the system.

To address the question of obtaining fast numerical solutions, discussions will have to
include various computer architectures and how both standard and innovative solution
strategies can be best mapped to the hardware. Some methods, such as cellular automata
approaches, have been shown to provide qualitatively similar solutions to certain PDEs
with great savings in computation time. These methods essentially discretized the system
in time where a small number of states that components can assume are identified.
Transition from one state to another is then specified as a set of rules and often implemented
as a lookup table making for very efficient and fast calculations. For applications where the
sacrifice in accuracy is not tolerable, other avenues exist that allow the solution to be varied
in accuracy to a satisfactory level. These may include latticegas methods (Doolen, 1991) and
other problem dependent approaches.

I ,ike its scientific computing counterpart, the issue of fast rendering is being addressed
with both specialized hardware and clever algorithms. Since the introduction of the
geometry engine (Clark, 1982) there has been several computer developments specifically
targeted at speeding up graphics rendering. Among the more recent include the Cube
architecture by Kaufman and Bakalash (1988) for rendering voxel data sets and the Pixel-
Planes 5 (Fuchs et aL , 1989) for fast polygon rendering. On the algorithm front, one can
take advantage of the fact that during interaction, one does not need as much detail. Thus,
there are several hierarchical representations and rendering algorithms such as octree
based methods used by Wilhelms and Vaa Gelder (1990) that can provide fast, coarse level

274
)

displays during interaction and detailed displays later. Others take advantage of situations
where a static 3D data is viewed from different positions and orientations. In such
situations, the Fourier projection plane (Dunne et al, 1990) reduces the 3D rendering task
to a single 2D inverse Fourier transform per view. Yet other approaches include the tiny
cubes, vanishing cubes and slice methods (Nielson & Hamann, 1990).

Another issue relevant to steering is to provide such capability to scientists who do not
have direct access to sophisticated hardware such as those found in a national
supercomputer center. This brings up the task of providing remote interactive steering. If
the compute server is some distance away from the local workstation where the graphics
is displayed, one must tradeoff the amount of data to be sent through the interconnecting
link as well the amount of work done at both ends. For example, both numerical solution
of the models and graphics rendering can be performed at the remote site and the final
images sent to the local workstation. This arrangement might be suitable if the images are
small or there are only a few images to send. However, for interactive steering applications
where the user needs to continuously interact with the calculation as the simulation is
progressing, it may be more appropriate to have a different setup where the computational
load is distributed between the remote and local machines and the overall network traffic
is minimized. Other considerations include the relative merits of data compression and the
cost of compression/decompression as well as some information loss.

Visualization Packages

Numerous visualization packages are available either commercially or from research
institutes. Below is a list of the more popular ones and some relevant information on each.
It is by no means an exhaustive list.

1. NASk. PLOT3D

For NAS users:
NAS Documentation Center, MS 258.6
Nasa Ames Research Center
Moffett Field, CA 94035.1000
(415) 604-4632
doc-center@nas.nasa.gov

For non-NAS users:
Computer Software Management and Information Center
The University of Georgia
382 East Broad Street
Athens, GA 30602
(706) 542-3265

Silicon Graphics, Inc.: Explorer
Currently comes bundled with the purchase of SGI workstations.

275

Silicon Graphics, Inc.
P.O. Box 7311
Mountain View, CA 94039.7311

Relevant newsgroups:comp.graphics.explorer and
comp.sys.sgi

3. AVS, Inc.: AVS4
An international repository for materials related to AVS is being managed
by the International AVS Center at the North Carolina Supercomputing
Center in Research Triangle Park. Funding for the center is from a con-
sortium of vendors.

AVS, Inc.
300 Fifth Ave.
Waltham, MA, 02154
(617) 890.4300

Relevant newsgroup: comp.graphics.ays
ftp site: ays.ncsc.org (128.109.178.23)

4. University of New Mexico: Khoros
Khoros is an integrated software development environment for infor-
mation processing and visualization based on X11. Khoros components
include visual programming language, code generators for extending the
visual language and adding new application packages to the system, an
interactive user interface editor, and interactive image display package,
an extensive library of image and signal processing routines, and 2D/3D
plotting packages.

Director: John Rasure (rasure@eece.unm.edu)
Relevant newsgroup:comp.soft-sys.khoros
ftp site: pprg.eece.unm.edu (192.31.154.1)

5. TaraVisual: apE3
Originally developed at the Ohio Supercomputer Center, apE has gone
through several revisions and is now handled by a private enterprise.

TaraVisual Corporation
929 Harrison Avenue, St. 201
Columbus, OH 43215
1-800.458-8731

276

6. University of Wisconsin: VIS5D
VIS5D is a system for interactive visualization of large 5D gridded data sets
such as those made by numerical weather models. Three of the 5 dimen-
sions are for the physical space, one for time and the last one is organized
as a vector array for different variables at a given location. Features
include isosurfaces, contour line slices, colored slices, wind trajectory
tracing, etc., of data sets in a 3D grid.

Principals: Bill Hibbard (whibbard@vms.macc.wise.edu)
Brian Paul (bpaul@vms.macc.wisc.edu)
ftp site: vis5d.ssec.wisc.edu (144.92.108.63)

7. NCSA Data Scope etc.
The National Center for Supercomputing Applications is home to a host
scientific visualization software for V ariOUS platforms. Among the suite are
GelReader for molecular biologists, ChemTool for computational chemis-
try, Isosurface Visualizer, PolyView, Contours, Image, and DataSlice.

ftp site: ftp.ncsa.uiuc.edu (141.142.20.50)

8. Research Systems, Inc.: IDL
IDL (Interactive Data Language) is a software system for the analysis of
scientific data, a 4th generation language, and a visualization package. It
is also the precursor to PV-WAVE.

2995 Wilderness Place, St. 203
Boulder, CO 80301
(303) 786-9900

9. Precision Visuals, Inc.: PV-WAVE
PV-WAVE comes with a set of subroutines for data reduction, filtering,
transformations and analysis. A user programmable graphics interface is
also available.

6230 Lookout Road
Boulder, CO 80301
1.800-447-7147

10. Intelligent Light Corp.: Fieldview
P.O. Box 65, Fairlawn, NJ 07410
(201) 794.7550

2277 4,

Sonification and Other Input Channels

Undeniably, human vision is the sensory channel with the widest bandwidth. How-
ever, there are times when even the visual channel is overloadedor the visual information
too corrupted to communicate effectively. As an alternative or as a supplement to
visualization, one can take advantage of other sensory inputs such as sound and tactile
feedback. A simple example is the kind of information one considers when diagnosing
automotive troubles. They may be visual such as looking for smoke and observing the color
and amount of smoke; or they may be olfactory such as smelling for leaks; or they may be
auditory such as listening to squeaks and clanks.

It has been argued that acoustic signal ; or the sonification of data is an attractive
means of dealing with multi-variate data sets since one can map different variables to
different acoustic cues such as duration, pitch and loudness (Grinstein et al., 1989). Just
as visualization has icons for visual aids, sonification has earcons (Blattner et al., 1989) for
audio aids. These auditory icons may take the form ofwarning bells and sirens or may be
more problem specific. For example, in data sets where time is a dependent variable or
when measurements are not taken at regular intervals, the passage of time may be marked
by an earcon such as a clock tick or a drum beat.

Information can also be communicated via haptic feedbacks and by direct immersion
in the data set. For example, as early as the mid 1940s, gravity-suits were used to coun teract
the physiological effects of acceleration. Similar G-suitscan be used in a flight simulator to
simulate the effects of gravity on the aviator flying at different speeds. More recently,
research notably at the University of Washington, University of North Carolina, MIT, and
NASA focused on v irtu al reality interfaces. These include the design and use of such devices
as head-mounted displays and data gloves. An example where different sensory inputs are
integrated into a single environment is the Virtual Environment Workstation (VIEW)
project at NASA Ames Research Center (Wenzel et al., 1990).

Applications

There are numerous application areas of scientific visualization. These application
domains often share a symbiotic relationship with scientific vi-ualization. In numerous
cases, the peculiar needs of an application may serve to enrich the host of tools and
techniques of visualization and help it address the needs of other fields. Below is a list of
some popular application areas as well as some potential areas for future interactions.

1. Computational Fluid Dynarrans
CFD is the numerical study of the flow of fluids such as air and water. A major use of
CFD is the design of aircrafts. Its use often reduces the design turnaround time and
minimizes the use of expensive wind tunnels. Starting with simple hedgehogdiagrams
for displaying velocity fields, CFD has beon one of the primary pushers for the
advancement of scientific visualization particularly in the area of flow visualization.
Current techniques include the use of stream lines and polygons, particles, ribbons and
of course, animation to aid the designer in visualizing flow patterns. Together with flow
visualization, another problem that often arises in CFD applications is how visualization
of volumes in irregular grids are dealt with., Aside from efficiency concerns, irregular
grids also introduce some complications when interpolating values within the volume.

278

2 J1

2. Medical Applications
This is another application that is pushing the frontiers of scientific visualization
particularly in volume visualization. Unlike CFD applications, the volume data found
in medical applications are usually in regular grids and the information are usually
static or have much longer time scales than CFD data. These factors have led to some
very efficient rendering techniques of volume data from different imaging modalities
such as CAT scans, positron emission tomography (PET) scans, nuclear magnetic
resonance (NMR) images and ultrasound. The capability of direct volume rendering,
where internal structures of the volume are made apparent by varying associated
opacity values, has also been exploited in the area of surgical planning. This is where
a surgeon can run through a simulation of a surgical procedure using interactive volume
visualization techniques that allow him or her to do cutting and probing operations.
Ideally, this prepares the surgeon for the actual operation in terms of anticipating and
making contingency plans for the difficulties that were encountered during the
simulation.

3. Molecular Modelling
This is an area where scientific visualization has almost replaced the traditional
styrofoam ball and stick models that chemists use to help understand the structure of
molecules. Now, the physical balls and sticks are replaced with geometrical represen-
tations and computer renderings. One nice thing is that the user is still allowed to rotate
and view the model from different perspectives. This technique has been successfully
used in studies of docking molecules. A popular way of viewing the myriad of ball and
stick figures is with stereoscopic projections to achieve 3D like depth perspectives.
Mother way of representing the models is with density clouds giving rise to images of
molecules with fuzzy borders.

4. Climate Modelling
Similar to CFD, both climate and weather modelling focus on changes and patterns.
Traditional techniques include animation loops, iso-parametric or contour lines, and
hedgehog plots. More recently, problems involving severe weather watch, and long term
studies of El Nino and global warming have increasingly taken advantage of flow
visualization tools. To name a few, the McIDAS system at Wisconsin and the NCAR
package from Colorado provide some visualization tools that were originally targeted for
environmental data.

5. Computer Science
Scientific visualization has also found some application within the domain of computer
science studies. Its importance is recognized in the area of performance monitoring and
evaluation of parallel computers (Simmons and Koskela, 1990), program or algorithm
visualization, visual programming languages and debugging tools, CAD tools for layout
and design verification, and visualizing abstract objects and relations (Kamada, 1989).

a Education
An area where scientific visualization is only starting to make headways and therefore
has a lot of potential for making contributions is in education. This is particularly true
in science subjects where students may have a hard time grasping abstract concepts

279 4** t)

Already, some projects are making impacts in this area. For example, James Blinn
teaches concepts in mathematics and physics in the PBS series The Mechanical
Universe. Relativistic effects were also demonstrated visually by Hsiunget al. (1990). In
mathematics, one can easily see how dynamical systems degenerate to chaos. There are
other areas in the social sciences that can also benefit from visualization. For example,
a multimedia presentation of historical or geographical events is sure to capture the
attention of the students more than black and white text. As an idea, one can employ
a geographic information system (GIS) to show how the boundary lines along different
nations changed in history, or how continental drift manifested itself over time.
Furthermore, visualization can provide decision making aids and can also be used to
educate policy makers.

Where to go from here

Obviously, the material presented here is more than what can be covered in a one
quarter or semester course. The recommendation is to cover basic data transformation
techniques as well as data rendering techniques. As the field evolves and new techniques
are invented and more applications take advantage of visualization, more topics can be
added as breadth topics. When the field matures further, some of the breadth topics may
even become core topics. Selection from the breadth topics is usually decided basedon the
interest of the class or whatever is currently exciting. At the same time, some of the core
topics may be contracted. Alternatively, this could possibly be a two term course each one
emphasizing either core or breadth topics.

To keep abreast in this fast growing field, below is a partial list of conferences, journals
and newsgroups primarily within the US.

Conferences/Proceedings

1. IEEE Conference on Visualization, IEEE Computer Society Press
2. National Computer Graphics Association, NCGA
3. Special Interest Group on Graphics, ACM
4. Eurographics, NorthHolland Publishing Co.
5. Supercomputing, IEEE Computer Society Press

Journals/Magazines

A partial list, of journals that deal directly or indirectly with some of the issues in
visualization can be found in:

1. Pixel: The magazine of scientific visualization, Pixel Communications
2. Supercomputing Review, Thomas Tabor, 8445 Camino Santa Fe, San Diego, CA 92121
3 ACM Transactions on Graphics, Association for Computing Machinery
4. IEEE Computer Graphics and Applications, IEEE Computer Society

280

-..)

5. The Visual Computer, Springer International
6. Computer Vision, Graphics, and Image Processing, Academic Press
7. Journal of Molecular Graphics, Butterworth Scientific Ltd.
8. Computers in Physics, American Institute of Physics

Newsgroups

Sites with news feed from these groups can access the respective postings. It is
suggested that you start with the following set of newsgroups and prune the list down later
as you discover that some are too specific for your needs, while others are not too interesting
or there is simply too much traffic.

comp. graphics
comp.graphics.visualization
comp. graphics. data-explorer
comp. graphics. explorer
comp. graphics. ays
comp. soft -sys.khoros
comp. infosystems. gis

References and Suggested Readings

Banchoff, T.F. (1990). Beyond the third dimension. Scientific American Library.
Blattner, M.M., Sumikawa, D.A., & Greenberg, R.M. (1989). Earcons and icons: Their

structure and common design principles. Human-Computer Interaction, 11-44.
Chernoff, H. (1973). The use of faces to represent points in k-dim ension al space graphically.

Journal of the American Statistical Association, 68(342), 361-368.
Clark, J. H. (1982). The geometry engine: A VLSI geometry system for graphics. Computer

Graphics, 16(3),127.133.
Crawford, S.L., & Fall, T.C. (1990). Projection pursuit techniques for visualizing high-

dimensional data sets. In Nielson, G.M., Shriver, B., & Rosenblum, L.J. (Eds.),
Visualization in scientific computing (pp.94.108).

Doolen, G.D. (1991). Lattice gas methods: Theory, applications and hardware. MIT Press.
Duda, R.O.. & Hart, P.E. (1973). Pattern classification and scene analysis. John Wiley &

Sons.
DI, nne S., Napel S., & Rutt, B. (1990). Fast reprojection of volume data. Proc, 'ings of the

First Conference on Visualization in Biomedical Computing (pp. 11.1,,
Filson, R., & Cox, D.(1988). Visualization of injection molding. Simulation, 51(5),184 -188.
Foley, J. D., et al. (1990). Computer graphics: Principles and practice (2nd ed.). Addison

Wesley.
Freeman, W.T. , Adelson, E. H., & I leeger, D.J. (1991). Motion Without Movement.

Computer Graphics, 25(4),27-30.
Friedman, J.H. (1987). Exploratory projection pursuit. Journal of the American Statistical

Association, 82(397), 249-266.
Fuchs, H., et al. (1989). Pixel-planes 5: A heterogeneous multiprocessor graphics system

using processor-enhanced memories. Computer Graphics, 23(3),79-88.
) .

281

Grinstein, G., Pickett, RM., & Williams, M.G. (1989). EXVIS: Anexploratory visualization
environment. Proceedings of Graphics Interface (pp. 254-261).

Haber, R. B. , & McNabb, D.A. (1990). Visualization idioms: A conceptual model for scientific
visualization systems. In Nielson, G.M., Shriver, B. & Rosenblum, L.J. (Eds.), Visual-
ization in scientific computing (pp. 74-93).

Heilman, J., & B:esselink, L. (1991). Visualizing vector field topology in fluid flows. IEEE
Computer Graphics and Applications, 11(3), 36-46.

Hsiung, P.K, Thibadeau, R.H., & Dunn, R.H.P. (1990). Ray-tracing relativity. Pixel, 1(1),
10-18.

Hultquist, J.P.M. (1990). Interactive numerical flow visualization using stream surfaces.
Computing Systems in Engineering, 1(2), 349-353.

Kajiya, J.T. (1986). The rendering equation. Computer Graphics, 20(4), 143-149.
Kam ada, T. (1989). Visualizing abstract objects and relations: A constraint-basedapp roach .

World Scientific Publishing.
Kaufman, A. (1991). Volume visualization. IEEE Computer Society Press Tutorial.
Kaufman, A, & Bakalash, R. (1988). Memory and processing krchitecture for 3D Voxel-

based imagery. IEEE Computer Graphics and Application4, 8(11), 10-23.
Krueger, W. (1991). Volume Rendering and Data Feature Enhancement. In Siggraph'91:

State of the Art in Volume Visualization Course Notes, IV-16 to IV-23.
Laur, D., & Hanrahan, P. (1991). Hierarchical splatting: A progressive refinement

algorithm for volume rendering. Computer Graphics, 25(4), 285-288.
Levoy, M. (1988). Display of surfaces from volume data. IEEE Computer Graphics and

Applications, 8(5), 29-37.
Lorensen, W.E., & Cline, H.E. (1987). Marching cubes: A high resolution 3D surface

reconstruction algorithm. Computer Graphics, 21(4), 163-169.
McCormick, B.H., DeFanti, T.A., & Brown, M.D. (1987). Visualization in scientific

computing. Computer Graphics, 21(6).
Meinzer, H.P., et al. (1991). The Heidelberg ray tracing model. IEEE Computer Graphics

and Applications, 11(6), 34-43.
Mendez, R.H. (1990). Visualization in supercomputing. Springer-Verlag.
Nielson, G.M., & Hamann, B. (1990). Techniques for the interactive visualizatioa of

volumetric data" Proceedings Visualization '90 (pp. 45-50).
Nielson, G.M., Shriver, B., & Rosenblum, L.J. (1990). Visualization in scientific computing.

IEEE Computer Society Press.
Onodera, T., & Kawai, S. (1987). A formal model of visualization in computer graphics

systems. Springer-Verlag.
Pratt, W.K (1991). Digital image processing (2nd ed.). Wiley.
Press, W. H. , Flannery, B.P., Teukolsky, S.A. , & Vetterling, W.T. (1986). Numerical recipes:

The art of scientific computing. Cambridge University Press.
Reeves, W.T. (1983). Particle systems-A technique for modeling a class of fuzzy objects.

Computer Graphics, 17(3), 359-376.
Rogers, D.F. (1985). Procedural elements for computer graphics. McGraw-Hill.
Rogers, D.F., & Adams, el .A (1990). Mathematical elements for computer graphics (2nd

ed.). McGraw-Hill.
Rosenfeld, A., & Kak, A.C. (1982), Digital picture processing (2nd ed. vol 1 & 2).

AcademicPress.
Simmons, M., & Koakela, R. (1990). Performance instrumentation and visualization. ACM

Press.

282

Thalmann, D. (1990). Scientific visualization and graphics simulation. Wiley.
Thalmann, N., &Thalmann, D. (1991). New trends in animation and visualization. Wiley.
Tufte, E.R. (1983). The visual display of quantitative information. Graphics Press.
Upson, C., et al. (1989). The application visualization system: A computational environ-

ment for scientific visualization. IEEE Computer Graphics andApplications, 9(4), 30-

42.
Upson, C., & K3eler, M. (1988). V-buffer:Visible volume rendering. Computer Graphics,

22(4), 59-64.
Van Gelder, A., & Wilhelms, J. (1992). Interactive animated visualization of flow fields.

1992 Workshop on. Volume Visualization, ACM (47-54).
Waltz, E. ,& Llinas, J. (1990). Multisensor data fusion. Artech House.
Watt, A (1993). Three-dimensional computer graphics (2nd ed.). Addison Wesley.
Wejchert, J., & Haumann, D. (1991). Animation aerodynamics. Computer Graphics, 25(4),

19-22.
Wenzel, E.M., et al. (1990). A system for three dimensional acoustic visualization in a

virtual environment workstation. First IEEE Conference on Visualization (pp. 263-

272).
Westover, L. (1990). Footprint evaluation for Volume Rendering. Computer Graphics,

2 4 (4) , 367-376.
Wilhelms, J. (1991). Decisions in direct volume rendering. UCSC-CRL-91- 12.
Wilhelms, J., & Van Gelder, A. (1990). Octrees for faster iso-surface generation. Computer

Graphics, 24(5), 57-62.

283
.)

Captions for Color Prints

Chapter 5
Color Print 1: Raster graphic

Chapter 8
Color Print 2: CAChe Vitamin B1 stereo pair
Color Print 3: CAChe HexacarbonvLs
Color Print 4: Field View clipping

Chapter 9
Color Print 5: Three-dimensional graph using the circle function
Color Print 6: Sample output frame from a climate model

Chapter 11
Color Print 7 Effect of color mapping on interpretation
Color Print 8: Water, OH-H bond breaking

Chapter 12
Color Print 9: Visualization study of a thunderstorm; Visualization Group, NCSA, c. 1989
Color Print 10: Visualization study of the NSFnet; c. Donna J. Cox and RobertPatterson,

NCSA

Chapter 13
Color Print 11: The Sudanese Miibius band, lower right, is the initial form generated

by the real-time interactive computer animation ithsnail. It is related to the "stan-
dard" form of the Mobius band, lower right, as the spherical bead, upper right, is
to an untwisted annular band spanning two unlinked (yellow) circles. Retract the
circular ribs connecting opposite points on the curve(s). These shapes appear in
the solution to Exercise 1.1 at the end of Chapter 13 of this book.

Color Print 12: A once-twisted annulus spans two linked circles, upper left. Stretch the
ribs connecting opposite points on the curves to full circles and thus generate a torus,
upper right, by a succession of pairwise linked circles. This is a round shadow of the
flat. Clifford torus in 4-space. At the lower right is a Mobius band with 3 half-twists,
spanning a yellow trefoil knot. Move the knot to a circle and obtain a shadow of
Lawson's minimal Kleinbottle in 4-space. which is also a smooth form of Brehm's
knotbox. These shapes appear in the solution to Exercises 2 and 3 at the end of
Chapter 13 of this book.

Color Prints 11 and 12 were composed by Chris I lartman in Adobe Photoshop with
frames from a Silicon Graphics Iris 4D/300VGX and printed on a Tektronix Phaser
II color printer in the Renaissance Experimental Laboratories of the NCSA, Univer-
sity of Illinois. ©George Francis, Chris Hartman. and Glenn 'happell, NCSA,
University of Illinois, 1993.

Color Print 1 Color Print 2

I Imagism 61.01Mosa awl Timpies Mummeries b
0111.11. 0.111.111/ F.

Color Print 3 Color Print 4

v* r rAl

ANY

'471;41 14 EI -.-
.1.11111111.1111.,JAIL:.

W.%

a 4 CD

amaillimill.1111111111111u2.
-442

Color Print 5 Color Print 6

Effect of Color Mapping
on Interpretation

2.0A

3.4A

Color Print 7 Color Print 8

ade %):.

Color Print 9

Color Print 11

9

Color Print 10

2.6A 3.0A

3.5A Water,

OH H

bond
breaking

Color Print 12

A A

ASSOCIA(1()N P 1 ADVA.NCTMFNI (ThF. MPI111N("; ATIOr`,1

BEST COPY AVAILABLE

,j

ISBN 1-880094-09-6

